
mm-r mmmm — 'J'.II."|"»T > •■'^rmmnmm

CO

UTEC-82-103

Second Semiannual Tedinicel Report

TRANSFORMATION cf ADA PROGRAMS INTO SILICON

82 Marl -82 0d.3l

Elliott I. Organick, Principal Investigator
(801)581-6087

Contractor: The University of Utah

Date of Contract: 81 SEPT 1

Expiring: 83 AUG 31

Sponsored by

D efense A dvanoed Research Projects A gency (D oD)
ARPA Order No. 4305

Under Contract No. MDA 903-61-0-0411, issued by
Defense Supply Sen-ice -W ashir.gtcn. TV ashington DC 2031C

The views and conclusions contained in this document
are those cf the authors and should not be interpreted

as representing the official pclicies, either expressed or
implied, of the Defense Advanced Research Projects Agency

of the US Government.

November 1962

82

gnc hiL üüPY

iS^Tor public «Jl*«« ; P I)UtxtouüonUnUimted_

12 2? 013

T mil ■■mil.11 iiwWluniUJIiJiHiiHIIII, Jl.HI m-ymrwm

1

Second Senüannual Technical Report
pagei

Table of Contents
1. Summary
2 Converting the DoD Internet Protocol to Silicon.

2.1. Interesting aspects of Bead- fait- Parameters
2.2. Arithmetic processing
2 3 On going and future related work

3. A Transformation System; Theory and Implementation
3 1. Systems Implementation
3^2. Conceptual/Theoretical Basis for Transformation

3.2.1. Interface V ith Diana
3.3. Some Bemarks on System Implementation Issues

4. PPL Design Activities
4 1 PPL Design Characteristics
A.Z. The Analogy Between the PPL Design and a Computer Program
4.3. Design Time vs. Integrated Circuit Area
4.4. The Utah PPL Design System
4.5. Presently Existing Circuit Layout Tools
4.6. Circuit Simulation and Electrical Checking
4.7. Self Timed IC Design with PPL^s
4.8. Future CAD Tools for the PPL Design Methodology
4.9. Observations

5. ProjectBibUography of Papers. Reports and Theses
6. Appendix

1
3
4
5
5
6
6
6
7
7
B
8
8
8
9

10
10
11
12
12
14
16

:

:

•

V '»-.f

m -«.«__

.iiLii im iiinpiinjii ii in 111 ' limi" JIMl "-111" l i.iii.iii.ji.iipnia Jim. niiuiniiiiiipi ■

SECURITY CLASSIFICATION OF THIS PAGE (When Dal* Entered)

REPORT DOCUMENTATION PAGE
\. REPORT NUMBER

UTEC-82-«Ü JOB

2. GOVT ACCESSION NO

/?/; dUcJzltl
4. TITLE fanrf Suhdt/c)

TRANSFORMATION OF ADA PROGRAMS INTO SILICON

5. TYPE OF REPORT & PERIOD COVERED

P^^Ks emi- annual

J-XAA^^ »- 31 OfcC M
5." PERFORMING ORG. REPORT NUMBER

7. AUTHORf»;
Dr. E. Organick, Dr. G, Lindstrom, D. K. Smith,
Dr. Subrahmanyam, T. Carter

9. PERFORMING ORGANIZATION NAME AND ADDRESS

University of Utah
Computer Science Department
Salt Lake City Utah 84112

READ INSTRUCTIONS
BEFORE COMPLETING FORM

3. RECIPIENT'S CATALOG NUMBER

8. CONTRACT OR GRANT NUMBERf«;

MDA 903-81-0-0411,

10. PROGRAM ELEMENT, PROJECT, TASK
AREA » WORK UNIT NUMBERS

1001/1122

II. CONTROLLING OFFICE NAME AND ADDRESS

Defense Advanced Research Projects Agency (DoD) ^,yM—fcr 1982

1400 Wilson Boulevard
Washington, D.C. 22209

U. MONITORING AGENCY NAME & ADDRESSf//dy»orenr /rom Controlling Oltice)

Defense Supply—Service Washington
Rm ld-245, The Pentagon
Washington, D.C. 20310

12. REPORT DATE

13. NUMBER OF PAGES

15. SECURITY CLASS. (W (h/s reporr;

unclassified

15«. DECLASSIFI CATION/DOWN GRADING
SCHEDULE

16. DISTRIBUTION STATEMENT <ol this Report)

This document has been approved for public release and sale; its distribution
is unlimited.

17 DISTRIBUTION STATEMENT (ol the abalrect entered In Block 20, II dlllerent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS CConfinue on revern» side)/necessary md idenl/fy by block numberJcontrol Unit, CADDET , SPICE

Internet protocol, submodules, Ada-to-silicon, transformation metholodogies, high
level program specifications, DoD Internet Protocol, special function architec-
ture, ADA packages & tasks, VLSI synthesis, program formal specifications, device
modeling, switched capacitor filter, stored logic array, logic simulator, hand
shake, speed-independent, one-hot, portable standard LISP, silicon compiler, VLSI

^This report outlines the beginning steps taken in an integrated research
effort toward the development of a methodology, and supporting systems, for
transforming Ada programs, or program units, Idirectly) into corresponding
VLSI systems. The time seems right to expect good results. The need is
evident; special purpose systems should be realistic alternatives where
simplicity, speed, reliability, arid security are dominant factors. Success in
this research can lead to attractive options for embedded system applications.

DO, ^i 1473
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

' '

i. .■■■—■■■■i» ii ■■ immmmm

 ' - • ■ ■

llll.lWlllUlll*ÄJWl.UI»|.HJl.Nll-l-l.!I.UI«.PVmi'

SECURITY CLASSIFICATION OF THIS PAGEfHTitn D«'« Ent»r«rfJ

Ada programs can be regarded as ensembles of machines, one per program unit
(module), which in turn may be mapped directly into corresponding VLSI
structures on one or more chips with interconnecting (packet switched or

other) communication nets.

Many of the transformation s'oeps, when performed manually, when optimization
is not everywhere crucial, and when care is taken to constrain somewhat the
structure of the source Ada program, appear to be understood.

The research reported here is part of a five-year plan, the first year of
3hLh focuses on "proving" the concepts through a realistic demonstration of
Methodology for a specific example Ada program (a silicon representation of
oart or afl of the iL Standard Internet Protocol. IP. initially "pressed in
Ma.) Since the mapping from Ada to VLSI is seen as a multistep. i^tive
procedure, considerable effort for the following four and a *alf f3" "^^
?he invested in the development and tailoring of intermediate languages and
their bridging algorithms (compilers), as needed, and i" the development of
objective criteria for their use with feedback loops for iterative design.

Implicit in these objectives is the development of a set of hardware
structuring paradigms (rewrite rules) whose application can ensure that
transformation steps between levels of abstraction in the design process are
well structured in order to preserve the integrity and, where possible, the
clarity of the original Ada specification. Some paradigms, but of course not

all, lead to highly efficient implementations.

I

t

SECURITY CLASSIFICATION OF THIS PAGEf»Ti«n D«r. Enffd) i
—

*■■ -».^

1

Abstract
This report summarizes the second six months of work of the coordinated research project,

"Transformation of Ada Programs into Silicon." (The main objectives of this project vrere
outlined and then introduced in depth in the preceding semiannual report.) In the past seven
months, work has advanced in three main areas. Expanded summaries of work in these areas
(and subareas) are presented:

1. Work on the principal case study of this project: Converting the DoD Internet
Protocol to silicon. The full Protocol has beer, decomposed into three main parts.
The part that handles outbound datagrams has beer, fully specified in Ada and
an interesting part of that code has been transformed into an NMOS circuit
composite represented in PP1, (Path Programmable Logic).

2. A tranformation system is being implemented to map Ada program units into
intermediate forms in syntactically correct Ada. These intermediate forms are
suitable for input to the transformatior; system (ASSASSIN) that automates the
production of the asynchronous control components ci the PPL circuit composites.
A theory for synthesizing circuits from system specifications that are more
abstract than A da is also reported.

3. Research and Development on the design, fabrication, and application of PPL
(Path Programmable Logic) circuit arrays is reported

a. The ASSASSIN system which transforms state graphs of state machines
expressed in textual form to self-timed PPL programs and composites is
operational.

b. Completion of a PPL simulator (ASYLIM) has been incorporated into the
PPL design system.

c. Design and composite layout of three different PPL test drcuits were sent
out for fabricaton. The circuits will be used to check a wide variety of
PPL cells and supporting circuitry.

d. A design technique for ICs representing self-timed stored state machines
and data path components using the PPL cell set has been developed. The
results of the research have produced new PPL macro cells which
augment the set of available cells.

Aoassslon For

NTI3 OSA*I
DTIC TAB
Unanoouncod
Justlflcatloa.

i\
a

By
JDlstrlbutlon/

Availability Codes

Avail aud/or
Syeclal

—

r^ — , ^,—, ~^,

Second Semiannual Technical Report page 1

1. Summary
This report summarizes the second six months of work of the coordinated research prqject,

"Transformation of Ada Programs into Silicon." Project objectives span a broad and ambitious
spectrum (broader than the already broad title implies), hence the term coordinated; this
refers to the fact that, on the one hand, all research within the project is closely related, but
that the overall project success is not predicated on close coupling of individual subproject
results. The main objectives of this project were outlined and then introduced in depth in the
preceding semi-annual report [19]. They are repeated here in more brief and in a somewhat
updated form:

1. Develop elements of a tranformation methodology for converting Ada programs
or their parts, into VLSI systems. This research includes identifying a sufficient
set of transformation rules for mapping program specifications through
successive levels of representation, from Ada or related abstract specifications, to
integrated circuits.

2. Demonstrate the methodology developed in 1 by manually applying it to a non-
trivial example: transforming an Ada-encoded representation of the DoD
Standard Internet Protocol [20] (or a significant subset thereof) into NMOS
circuitry.

3. W ork toward a theory for identifying substructures within Ada programs for
which the transformation methodology is pragmatically attractive.

4. Develop specifications for a set of software tools for use in automating the
transformation methodology developed in 1.

5. Develop a methodology for testing integrate circuits representing Ada program
units and for integrating such circuits into a larger system.

In the past seven months, our work has advanced in three main areas and in several
subareas listed below. Expanded summaries of work in these areas are presented in
succeeding sections of this report.

1. W ork on the principal case study of this project: Converting the DoD Internet
Protocol to silicon. The full Protocol has been decomposed into three main
parts [18, 13]. The part that handles outbound datagrams has been fully
specified in Ada [14] and part of that code has been transformed into an NMOS
circuit composite [6].

2. Implementing a tranformation system to map Ada program units into
intermediate forms in syntactically correct Ada. These intermediate forms
represent <state machine, data path> pairs suitable for input to another
transformation system that automates the production of circuit composites [24].

a. Development of a theory for synthesizing circuits from system
spedficalions that are .nore abstract than Ada, e.g., axiomatic algebraic
specifications or from Ada augmented with ANNA-like specifications that
also aljow specification of temporal properties. [12, 29, 25, 26]

3. Research and Development on the design, fabrication, and application of PPL
(Path Programmable Logic) circuit arrays.

a. Completion of the transformation system called ASSASSIN, reported in
detail elsewhere [7], which transforms state graphs of stale machines
expressed in textual form to self-timed PPL Programs and composites.

b. Design and composite layout of three different PPL test circuits called
UU20, UU21. and UU23. UU20 is used to check the read-enable flip-
flop, the write-enable flip-flop, the asynchronous-clear flip-flop, row
pass-transistors, and flip-flop pull-up cells. UU21 checks the Set/Reset
flip-flop, the two-wire latch, the inverter cells, the column pass-
transistor, and the S, R,l, and 0 cells. UU23 checks the input and output
pad cells. In addition, a test circuit containing several different oscillators
and counters has been included for determining performance.

UU20 and UU21 were sent to M OSIS for the June 4 run, and in July we
were informed that, due to some mask problems, none of the circuits were
completed. W e are still waiting for these parts. In September we decided

-__ —

mmmmmm wmmmm wminmmH i .i.uiin mu.wp

1

Second Semiannual Technical Report page 2

to process all three test drcuits in our own (HEDCO) laboratory.
Problems with mask making equipment have caused delays, however,
UU20 and UU21 are expected out of the process line in late November or
early December. UU 23 should also be processed in December.

c. Completion of a PPL simulator called ASYLIM which has been under
development for the past year. (The work was sponsored primarily by e
commercial company. The simulator was incorporated into the PPL
design system for use in this project. The main characteristics of this
simulator are outlined in Section 4 of this report.

d. Development a design technique for ICs representing self-timed stored
state machines and data path components using the PPL cell set. (The
work was sponsored by a private company.) These techniques have been
primarily directed at the design of drcuits using a conventional single-
rail Four Cycle signalling protocol. The results of the restarch have
produced new PPL macro cells which augment the set of available cells

MtMriliiailiMMiil ■tfxitiii .«.naiinfli

mr- -ym^mmmw ■^""^

Second Semiannual Technical Report page 3

2. Converting the DoD Internet Protocol to Silicon.
by

Elliott I. Organick and Gary Lindstrom

As mentioned previously [19], our design of the Protocol is based on a decomposition into
three <=ubmodules: INM_ OUT dealing with traffic outbound on a given local net, INM_ IN
similarly handling inbound traffic and IKM _ SRV tying them together and interfacing to the
Hcst(s).' VT e envision one IKM _ IN and INH-OUT pair of submodules for each local net
interface, but only one IN M _ SRV submodule per Internet M odule (IN M).

We are following the fiveHevel software development and testing plan discussed in the
preceding report. The levels correspond to IP applications in increasingly generalized settings.
The plan stipulates testing as each level is reached, rather than as an epilog to the
development plan. Testing is to be conducted at several levels, from the physical
characteristics of the circuits themselves to the (Ada) semantic behavior of the submodules
that have been converted to circuits.

After designing (specifying) the interfaces between the submodules [13, 10], we then
selected the INM _ OUT (sub)module as the first one to be converted to arcuitry. W ork toward
this objective in the past seven months has been rapid in some respects and slow in others.

The specific and significant accomplishments have been as follows:

1 W e have coded the complete INM _ OUT submodule in Ada and have succeeded
in compiling most of it for execution on the Intel iAPX 432 system except for
statements and declarations associated with uses of the Ada rendezvous
construct.
[As later versions of the Intel compiler become available, we expect not only to be
able to compile the full module using rendezvous syntax and semantics, but to
execute it in this mode as well. In the meantime we are working with a version
of the oode that simulates each rendezvous via Send/Receive primitives
instantiated through use of the A da generic package mechanism]

2 The INM OUT submodule is an Ada package named INM- OUT- Module; it
' contains three intercommunicating Ada tasks. We are in the process of

transforming each J these tasks into PPL circuit composites beginning with the
second one listed below:

a The main task, named INM _ OUT, interfaces with INM _ SRV and with
LN M _ OUT such that a pipeline effect is achieved for speeding datagrams
along the outbound data path: Host module —> INM_ SRV —>
INM-OUT —> LNM_0UT.

b An auxiliary (server) task, named Read- Init- Parameters, which obtains
from host-related memory the initial parameter values needed Lc perform
datagram transmission. Transformation of this server task, one which is
rich in Ada control structures, is essentially completed. A demonstration,
showing the process by which we make the transformation tc PPL circuit
composite was given in June, 1982 during a DARPA review of our project.
That demonstration was based on a preliminary version of the Ada task,
which has now been updated. The composite produced for the current
version of the task is mere interesting and is apt lc resemble more closely
the one we eventually will consider the final version.

c Ar auxiliary task named Translate-TOS_ Task, which operates in
parallel with INM - OUT, the main task, by translatiing lype-of-service
information from host-level to local-net level encoding.

3 As just mentioned, the task Read. Init_ Parameters has now been converted
semi-«utomatically to PPL circuit composites in NMOS. The conversion into
PPL composite form is discussed in part in a new paper by Carter, to be presented
at a DARPA-sponsored meeting at Stanford, on November 5 and in part below
Carter's paper focuses primarily on the technology for converting the control
structure portion of the Ada task into the self-timed control unit of the

: .

:•

r

0 .; 1

Second Semiannual Technical Report

corresponding circuit

page 4

In this report we make some observations on the overall structure of
Read- Init_ Parameters and on some of its subtle details. V e also comment on
so:r° of the steps we traversed In arriving at this versicr. of the task. A copy of
the body part for the present version of this Ada task is to be found in the
Appendix.

[The complete Ada specification of the INM_ OUT submodule, which includes
this task is giver, in a separate report [14], A reader c: the Appendix version
-nly is expected to imagine how the task Read- IrJt_ Parameters interfaces with
the remainder of the entire submodule. A reader of the separate report is treated
to a "road map" o.' the full Ada structure of the INM_ OUT submodule which
helps to understand our overall design.]

4. As a prelude to testing hardware versons of Ada pargrara units and in support of
our work in specifying subsystems in Ada and then simulating them, we
installed, made operational, and have begun using a complete Intel 432 Cross
Development System. This system indudes an Ada cross' compiler for a large
subset of Ada and a 432 multiprocessor system consisting of two regular and two
interface prooessors. \f e expect to receive from Intel a compiler that includes full
tasking by the end of calendar 1962 and an equally complete resident compiler
approximately a year later. We have also gained hands-on familiarity with a
number of the 432 System's operating system features.

2.1. Interesting aspects of Read- Tnit Parameters
The structure of Read- Init_ Parameters includes a number of typical and interesting

features of Ada tasks both from the point of view of inter-task communication and intra-task
body structure

-Inter-task communication. The task indudes nested accept statements both of
which have both in-bound and out-bound parameters. There accept statements
are implemented using simple request/acknowledge protocols.

-Intra-task computation. The task body indudes a rich nested loop structure and
one nested block defining local variables whose ranges are determined
dynamically. The loops include the infinite outermost loop of the task, familiar
"for" loops with fixed upper bounds, and indefinite loops escapes from which are
based on "exit when" dauses. As we have expected all along, all of these Ada
control structure forms map in a straightforward way to correspondirg control
structures at the state machine level and thence to PPL drcuits.

The data path of Read. Init_ Parameters includes several variables which are represented
in the hardware as registers or counters. One array variable is represented as a RAM to
represent a map from type-of-service encoded at the host level to type-of-service encoded at
the local net level. [The size of this RAM , which is never apt to be very large in any case is
limited to four-octets (for a 2 by 2 array) in our demonstration implementation, M cst of the
above variables are shared with the other two tasks of the submodule- that is they are
declared local tc the containing package, INM_ OUT. Module, however we perceive no
difficulty in achieving mutually exclusive access.

The one variable that is local to the entire server task does not and is not represented in
hardware as a storage element. Variables used locally for loop control are represented as
hardware counters and/or registers, but some sharing is achieved where there is no chance for
ccnflid.

Although the transformation to the Ada code tc the "engine level", i.e., to representation as
a (control unit, data path) pair, has been done by hand, the transformation research reported
in the next section has induded consideration of each of the "hand-made" mapping steps in
this particular exerdse.

—■ mm" ■^^^■i <mu«imiM.j

Second Semiannual Technica] Report pageS

2.2. Arithmetic processing
That we have encountered so little trouble performing the mapping for this task is partially

explained by the fact that the task involves only trivial arithmetic processing. (Indeed, the
entire INM _ OUT_ M odule involves only minor arithmetic processing.) At this stage of our
research we are glad this is the case as we consider it important to determice first what new
challenges, if any, must be met for achieving asynchronous control.

2.3. On going and future related work
Now that this part of the research is essentially complete, including the development of the

ideas embodied in ASSASSIN, we expect to be concentrating next on such challenges as the
application of the same or related asynchronous design principles to arithmetic processing.
Also included in our agenda is research intended to help us automate the mapping of data
path storage components, identified in the transformation from Ada program units, into PPL
circuits coupled to their controls.

r

T

^tmimtiltätlltmäti' fiiii W III MlflMiilllMitHnfii'iii n 1111111111 in iimiwiiiwiiirtil»!!«^-! in iiilllmrtiililiiMfiiiitMaiiiiTii

fBmwmi^^mm^ 1 ' ^H1"1 m*mmmmt. < i, i iwmmmmmmmmmfi^mmmmm mmm ^
1

Second Semiannual Technical Report page 6

3. A Transformation System; Theory and Implementation

by

P.A. Subrahamanyana

W e have made substantial progress along two directions: implementation of a prototype
transformation system and further development of a conceptual/theoretical basis to support
the design of integrated software-hardware systems. We outline the major contributions
below, with appropriate pointers to references that contain more detailed discussions.

3.1. Systems Implementation
~A set cf tools to support experimentation with Ada-to-Silicon transformations has

been implemented, and runs on the TOPS-SO. The system has been ported to the
VAX-750, and an initial version has been installed. This porting proved to be a
major job (and problem) due to unstated incompatibilities between INTERLISP-20
and INTERLISP-VAX. Further debugging and testing of the Vax version will be
done when the experimentation is moved completely over to the Vax. (Given the
needed personnel, we expect this to be carried out over the next year, when our
address space requirements force us to move over to the Vax).

—An initial set of transformation routines has been implemented and is being
augmented so as to handle additional syntactic constructs in Ada. This set of
programs is intended to aid in the interactive generation of the target hardware
description in a symbolic representation. Details of the current status of this work
are reported in [24].

3.2. Conceptual/Theoretical Basis for Transformation

—A unified theoretical framework to support a broad spectrum of the VLSI design
process has been introduced in [29], which is currently available in the form of the
draft of a research monograph. This monograph introduces an algebraic
framework to aid in the synthesis and verification of special purpose VLSI
systems, proceeding from high level specifications. It allows for abstract
specifications of the syntax, semantics, temporal and performance requirements
particular to a giver, problem. The characteristics of the environment in which the
system is embedded can also be specified and are used in the synthesis process. In
addition, the framework allows several of the oonstructs in existing languages to
be modelled, including nondeterminism, concurrency, and data/demand driven
evaluation. This allows the infrastructure to be (1) applied to situations wherein
the problem "specification" is in the form of a program in a conventional high level
language and (2) used to model the lower level synchronous/asynchronous nature
of implementations. Topology and circuit layout geometry can also be expressed
by using the algebraic primitives available.

—Annotations to Ada have been proposed to aid the abstract specification of
temporal properties of systems and desired performance requirements [25. 26. 12].

-Transformation methods to apply the theory in the context of Ada to obtain
systolic implementations are detailed [27, 24].

—A n algebraic modelling of weak conditions to be met by asynchronous circuits has
been done — the resulting model is very simple, and the conditions concise and
intuitive [26].

Following a discussion of the spedfication and synthesis methods, illustrations are given
in [29] that demonstrate the use of the proposed theoretical basis in synthesizing various
classes of algorithms. It is shown how (families of) systolic algorithms may be obtained as a
special case. Methods for proving the correctness of implementations are presented and
illustrated with examples. The concept of the propagation of computational lod arises
natur illy in course of the development, and serves to generalize the commonly used notion of a
"wavufront" of computation for 2-dimensional architectures. Automatable design aids based
on the proposed algebraic basis are delineated. Finally, it is shown how M OS drcuits can be

MaMiuUkAK, - I

.. ...

mmmmmmmmmmmmmmm^~»*^*i^»*mmmm mm

Second Semiannual Tecbnical Report page 7

modelled using the primitives available, and the algebraic derivatiou of Bryant's simulation
algorithm used in U OSSIM II is illustrated in this context

3.2.1. Interface V ith Diana
U ost of our transformation tools use the parse tree representation of a program as the

primary data structure they work with. W e have in mind the long term objective of being able
to interface with the tools that are designed to operate on Ada program parse trees, and that
being developed by the Ada community at large (and in particular the DARPA community).
To this end, we have been interacting (to a limited extent) with the Diana group (primarily at
Tartan Laboratories).

3.3. Some Remarks on System Implementation Issues
W hile we are continuing work on the current version of the transformation system (in

Interlisp, and on the Vax and DEC-20), it has become clear that there are two mtjor
defidendes that need to be remedied sooner or later. These are (1) unsuitability of the current
parse tree interface (and parser generator) for several of the transformation routines
themselves; and (2) (lack of) speed: this is due to the slowness of Interlisp on the Vax
(compounded, of course, by the fact that we are working with non—trivial pieces of software).

To solve the first problem, it is necessary to redesign the parser generator (which has been
imported from ISI [31]). However, since the other tools (particularly the syntax directed editor
generator and pattern matching system) and the history list mechanism are all very much
inter-related and quite deeply ingrained in the system, there is a substantial software
development effort involved in doing this. Currently, we have neither the equipment nor the
man-power to support such an effort. We envision the redesign being more profitably done
using a newer generation of Lisp (e.g. PSL, CommonLisp) for effidency reasons, and run on
personal machines, rather than on a Vax like machine. In the interim, however, the response
of the extant version of our system can also benefit greatly from being run on an Interlisp—
supporting machine, e.g., the Dorado/Dolphin. Having access to such systems would
obviously result in greatly improved programmer productivity.

 .i.

1

r

C L

Second Semiaimual Tecimica! Report
page 8

4. PPL Design Activities

by

Kent F. Smith, Brenl Nelson, Tony Carter, and Alan Hayes

p^ra^TbllToSc rPPMh^V11^/9^ T^1! ^ a ^hodology known as Path rrccrarr.. .able Logic (PPL) has been developed by the Utah VLSI Group Thi>= work has beer

Sd iHart Phvrl ^ 'H lARPA a,nt,raCl and by COIltr«cta with other^e^t agenda
«mn£ P!, y SUVf°* f,r0? S^eral iDdependent oompanies. The system addrü?^
St Sf t^016 lnClU^n! iriilial l0gic desi^- ^t layout, stoSiüTSSrS; checking, and pattern generator tape preparation. It includes- (l) symbolic lavoi ♦ nrnJr»^.?-,

4.1. PPL Design Characteristics
The characteristics of design using the PPL methodology include:

1. IC design is performed by placing small circuit modules which can be represented
vrith loipc symbols on a grid representing the integrated circuit. W hen the grid
LA fh3; POpUlf ^ iS b0^ the loßical ^presentation and the topologlS

layout of the arcuit. Effiaenl design changes can be made as a result of this
Jr!!

ßI:f
met

f
hod0l0gy ^^ the designer has simultaneous perception of the

circuit function and the circuit topology.
2' Jw^I m°du1^ have predefined schematic and composite representations

They are custom deslgned to optimize performance and size for any specie

^ ^Tv01111-.^00635- De£lgr- Rule Checkinß <DRC) I» Performed or the module and thus it is not necessary to do DEC on the overall circuit since it is
simply a collection of drcuil modules.

3 lÄ^t0^11 Can be deSigned i0 PPL and no ^o™ d«ign is required. The
pads and the interconnect can also be made by the placement of PPL cells on the
gnd. All interconnections between modules are there by default The designer
only places breaks to remove connections rather than to add them. ' '

*" O/PPT^' ^T if P0Sfib)e^ ^«n design of macros which are collections
of PPL cells put together tr. perform spedfied functions. These macros cells can
have custom physical shapes to conform to specific space requirements

5. Simulation ard checking are easily accomplished, eliminating the need for very
difficult and time-consuming operations. The only elements manipulated are
symbols ratne-r than transistors or rectangles which, must be checked .rsvsterL
that design at the transistor level. systems

4.2 The Analogy Between the PPL Design and a Computer Program
There is an analogy between the development of the PPL desigr methodoloev and

programming languages. The l's and O's which were used in eSy nSSKe laMut«
ZT^TT^^uf are ana,0gous l0 the rectangles which an. used in the custom layout of
r wHH *™i*- V™ng trans

J
istorE ™ a composite might be thought of as being analogoui

to wnüng machine language code in hexidedmal since we are still placing rSSngl«T^
grid ,n shorthand form. The PPL design methodology is analogous to writing progr?ns"in
assembly anguage where mnemonics are used to represent spedfic collectiors oftrirStor^
(function*)- jhls PPL design methodology is still ver? dependent upon he sped^ eSo^

depetden;5 ' ^ ^ " ^^ t0 the ^ ^ aSSerabl>' '-guage'Ts mtÄ

uJnl ^f0^ bf Tfuen the ^l0Pinent of computer programs and the PPL methodology can
be earned even further with the compilation of high level circuit description languages to

■ -- ^-«i-e-^-^-Tt,^..!.-. ,-, .,,

Second Semiannual Technical Report pagefl

integrated circuit layouts (silicon compilers). The high level descriptions of the integrated
circuit are machine independent and are compiled directly to a specific PPL cell aei designed
in a particular technology. To date there have been cell sets done in N M OS [21], CM OS [22] ,
and I2L [23]. An example of such a silicon compiler is A SSA SSIN [7] which is currently in use
at the U niversity of U tah.

4.3. Design Time vs. Integrated Circuit Area
The main disadvantage of PPL design methodology is that it will probably result in circuits

which are larger than completely custom-designed circuits. Previous work done by the VLSI
group at the University of Utah has compared some custom designs to some PPL designs. This
gives insight into the tradeoffs which exist between the two techniques. A circuit known as
the Utah Serial Cordic Machine (USCM) was designed under a contract withW right Patterson
AFB for the VHSIC program [3, 4, 5] using both custom design techniques and the PPL Design
Methodology. The USCM was constructed using an implementation similar to the shift-
register scheme proposed by V older [30].

The USCM was implemented using a CMOS PPL cell set. Its design time and chip area
were compared to those for an equivalent custom NMOS design done at Boeing Aerospace
Corp. The entire CMOS PPL chip was designed and simulated in approximately eight man
days, compared to approximately eighty man days for the NMOS custom design. The CMOS
PPL design was 19 percent larger than the custom NMOS design. W hile these figures may
not be an accurate reflection of the variables which enter into design time measurements, they
are indicators that PPL designs require significantly less design time than do equivalent
custom designs and result in chips which are not significantly larger in area.

This favorable reduction in design time can be attributed to several factors: (1) The designer
has concurrent perception of logical function and layout. Thus, he can immediately see when
the logic function being implemented does not fit in well with the rest of the circuit. The logic
design is made as the composite is drawn. This eliminates the need for separate composite
layout/logic design stages. (2) The higher level symbolic notation allows the designer to
manipulate very complex logical elements in an efficient manner. It is, for example, not
necessary to trace a complex series of logic gates to determine the function of the circuit
because the symbolic notation is easily read and interpreted. In addition, the symbolic
notation car. be directly simulated and does not require the extraction of the transistor-level
circuit from the composite.

Past experience would indicate that the area penalty incurred by the PPL design
methodology will eventually disappear as more sophsticated design tools are developed. This
is again analogous to the development of compilers. It is well known that, as expertise in
compiler writing improved, the gap between hand-coded and compiler-produced object code
size became negligible. Some of the techniques being developed for compaction of integrated
circuit layouts will be used to close the current gap between the area required for custom
designs and automatically generated PPL layouts.

4.4. The Utah PPL Design System
In addition to the development of the PPL as a hardware implementation methodology

described above, the otner major thrust of research here at Utah has been in developing
software tools for PPL design. The goals of this software research have included Lhe following:
(1) Finding ways to exploit the symbolic nature and representation of a PPL design to reduce
design complexity. (2) Development of CAD tods around conventional computer hardware,
which would allow designers to work from remcLe workstations. (3) Creation of a complete
system to be used by the IC design community here at Utah.

An integral part of the design system is a Computer Vision CADDS2/VLSI Designer
System. It is used to do the composite layout of the individual PPL cells, placement of the
individual cells on a grid to form a circuit, connecting the circuit to pads, adding scribe lanes,
and generating a PC tape. Although we have relied heavily on this machine in the initial
development of the system, in its absence all of the functions it performs could be done with
other tools (the Cal-Tech Software Package for example).

 —

0

iiiniiiiiiMiiiiiMiiiiiüüi

Second Semiannual Technical Report page 10

The other part of the design system is built around a DECSystem-20. A silicon compiler for
fimte state machines (FSM), a symbolic layout system, a simulator and cell placement
checker, and a compaction program all reside there. The transfer of designs between the
Computer Vision machine (CV) and the DECSyslem-20 is done using a mag tape written in
Computer Vision External Database format. The combination of these two computers gives
the system the power of the CVs IC layout features combined with the computing power of a
mainframe.

Each PPL oell used in the system has three representations. The composites of the cells are
oesigned so that they fit together by virture of their being placed adjacent to each other on the
grid. A schematic representation of each cell is created for reference. A graphical
representation is also created which is used by the designer as he uses the cells tc form larger
circuits.

4.5. Presentiy Existing Circuit Layout Tools
The placement of the PPL cells on the grid to form a circuit can be done using either the

Computer Vision machine or one of several programs on the Utah DECSystem-20 The
program used for cell placement on the DECSystem-20 is known as SLED (Structured Logic
Editor) [15] . In SLED, the PPL design is represented as an array of cell symbols which are
then edited. Y ith the SLED editor, a simple CRT terminal and modem is all that is needed for
arcuit design but at the expense of more cryptic graphical representations of the individual
PPL cells than those found on the Computer Vision machine. In general, the ability to use
SLED from a remote terminal outweighs this limitation. Advanced editors are now being
designed to run on a CRT terminal that will overcome some of the graphical limitations of
SLED.

i

*

SLED was designed to be similar to a screen-oriented text editor. In fact, the commands in
SLED are the same as the equivalent commands in EM A CS [8], a popular screen-oriented text
editor. Cursor movement is possible in any of the four directions, and regions (windows) can
be marked and then named, deleted, replicated, or written to a disk file. Conventional text
editors, however, only allow for scrolling and windowing in the vertical direction (lines longer
than the width of the screen are wrapped around). In SLED, scrolling and windowing are
possible in both directions. Thus, an array with SOC columns and 300 rows can be displayed
and edited using SLED without screen wrap-around. The effect is that the user has an 80X24
window which can be moved around the array.

Circuit layout can alsc be accomplished using a first-generation silicon compiler.
Compilaton of Ada language modules to circuits is accomplished using the program named
ASSASSIN [7]. This program takes as its input a textual description of the operation of a
control unit (Finite State Machine) and from it generates a PPL lavout implementing the
control unit.

4.6. Circuit Simulauon and Electrical Checking
Simulation of the PPL design is essential before actual fabrication. An important part of

the design system is a simulator (ASYLIM) which can do simulation of the PPL. Because the
PPL cells are simulated and checked individually at the transient level when the cell set is
designed, the complete circuit made up of PPL cells can be simulated at a switch or gate level.
ASYLIM [16, 17] reads the circuit database written in Computer Vision External Database
format. Thus, the actual design can be simulated rather than a logic equivalent.

ASYLIM is similar tc other recently developed MOS simulators in that it uses a switch
model. However, the development of a simulator for PPL has shown [17] that a spedal
purpose simulator was required in order to preserve the user's abstract view of the circuit.
The input format to existing simulators is typically given in the form of a table or listing of
transistors and nodes. To preserve the user's abstract view of the circuit it was necessary to
design a simulator for PPL where the elements in the simulator correspond to those in the
PPL cell set During the interactive debugging phase of the simulation of a circuit, the user
can then refer to circuit elements by their position in the PPL array. An added feature of the
PPL simulator is that the information stored in the simulator's internal representation of the

_ ^.

•»^ ntpffe-r

-^ ---■■"'-'

Second Semiannual Technical Report page 11

circuit interconnect structure can be used for additional circuit checking unique to the PPL
methodology. The end result is that ASYLIM is similar to conventional switctHevel
simulators but ■vrith an extensive user-interface that allows the user to work with the drcuit
at the symbolic PPL level, the same level he uses when designing.

ASYLIM makes use of six~valu: d logic and uses a unit-delay timing model [1, 2]. The
underlying circuit model primitives are switches but with extensions to allow for the
simulation of certain entities as gates (flip flops and latches). It has been shown that the
unit-delay model is adequate provided the circuit is free from races. Thus it can be used to
model the sequence of drcuit activity [2].

An additional advantage of using ASYLIM over other simulators is that it contains an
extensive interactive circuit debugger. The features of this debugger allow the user to view
the circuit interconnect structure as constructed by the simulator. This is displayed in a
readable format that allows the user to quickly compare the simulator's interpretation of the
drcuit element interconnections and the intended design. This comparison uncovers most
design errors relatively quickly. In addition, the simulator performs a pre-simulation
plausibility check on the circuit's nodal structure. This feature (the idea borrowed from
Bryant's M OSSIM [2] enables the user to find a large percentage of the design errors without
ever going to the expense cf an actual simulation. This check identifies nodes with fanout but
no inputs, inputs but no fanout, no path to either power or ground, or multiple pullup loads.

V hile a logic cr switch-level simulation can provide an invaluable service in verifying the
logic design, there are many features of a design that do not show up in a simulation run. For
example, the ground node may be spedfied as an input to a transistor in a diagram but it
requires an explicit check on the layout to ensure that ground adually has been routed to that
device. In PPL design, these types of eledrical (non-logic) entities are included in the design
using spedal cells. For instance, the power bussing structure is induded by placing power and
ground buss cells around the circuit perimeter. In addition, other cells, like row and cokimn
loads, are usually left of out of logic diagrams but must be induded for the drcuit's corred
operation. ASYLIM checks for these cells as a part of its operation.

4.7. Self Timed 1C Design with PPL's
Another activity which has been funded by a private company and is cf importance in the

development of the PPL methodology is the design of self-timed modules using the PPL cell
set. The work is based on techniques developer, earlier [9] for realizing self-timed stored state
sequential circuits. The original investigations were applied to off-the-shelf SSI parts. The
present investigations are for the transfer of those ideas to large colledions (macros) of PPL
cells for use in the design of self timed systems tc be contained on single integrated circuits.
The investigations have led to further development of the PPL cell set to include methods for
self timed circuits [11].

This research has resulted in a design discipline for self-timed stored state machines which
has been developed using a conventional single rail Four Cycle signalling protocol. (State
descriptions are encoded in PLAs represented in PPL.) The disdpline differs from that used by
Carter [7] which uses a technique known as a 'one nit" scheme. The approach used for
realizing the self timed stored state machines is based on two key developments: (1) A novel
clocking circuit that generates a non—overlapping two phase dock cycle for an arbitrary size
register, where the duration of the phi 1 phase of the cycle is automatically adjusted to the
register size, and (2) A layout discipline for the folded PLA holding the state table, which
guarantees that the inputs to the state register will be valid at the time that the dock cyde
occurs.

The method depends on certain properties of the NM 0 S PPL cell set, i.e. that row and dock
wires are polysilicon, and that registers are formed by locating flip-flop cells such that their
dock lines are serially connected. This method offers a designer the advantage that he need
not concern himself with the timing details of a state machine design in order to assure that it
will work. Assuming that the state table realized by the PLA is corred, that the rows and
columns of the design are properly loaded, and that the proper interconnertions have been
made (all of which can be verified with the PPL simulator [17]), the designer can be assured of
corred operation of the state machine. The prindple disadvantage of the method is the

^_ —

.«,^4 Uji*9 ' '-PW.

mtm

-

Second Semiannual Technical Report .page 12

overhead of the clocking circuit which must be associated with each state machine.

I In addition to the self-timed stale machine design, the described design discipline [ll] has
been applied to several interesting types of self-timed data-path modules, for example multi-
bit latches and ripple-carry counters.

4.8. Future CAD Tools forthe PPL Design Methodology
t Our operational design tools should be enhanced. The following agenda lists the tools we

have identified as being an important part of a design system for this methodology and which
we plan to develop:

1. A Relational PPL Database Management System — This will allow the same
software tools such as the editor and simulator to be used on PPL designs done
using any spedfied integrated circuit technology such as NM OS, CM OS, I2L, and

. GaAs. In addition, it will provide a standard interface between the various CAD
programs.

2. A Symbolic Interactive, PPL Editor — this editor will be used to create a
symbolic representation of a PPL circuit. It will be used interactively by a
designer for the semi-automatic placing of PPL cells on the PPL grid. Because of
the symbolic nature of PPL, many of the mundane design tasks can be
automatically performed by the editor, leaving the designer free to concentrate

I on logical design. The editor will use either tablet or keyboard entry with
simultaneous graphical representation of both the logic description and the
circuit topology.

3. Minimization of PPL programs — Development of a compaction program for
compressing a PPL design by rearranging its symbolic description. Such a
program will use heuristically driven artificial intelligence techniques to arrive

| at a near-optimal solution to the minimization problem. This tool will give us
the capability of doing loosely packed PPL designs which can then be
automatically compressed. This is a unique feature of the PPL design
methodology and can be accomplished because of the symbolic nature of the PPL.

4. Predefined Structured Logic Blocks — We are persuaded that circuits that
already contain large blocks of ncn-PPL struciured logic should be designed
using similar techniques to those presently used for the design of such blocks.
For instance, if a random access memory (RAM) is required in a circuit, it is more
efficient, both frcrn a performance as well as a topclogical standpoint, tc actually
dc a custom layout of the RA M . The PPL cell set can be extended to include very
elementary' cells from which macro cells can be developed for any specific
implementation of a RAM . Components generated by such an implementation,
although not strictly PPLs, would be compatible with their PPL neighbors. A list
of of structures we expect to implement as macros includes:

nxm ram
nxm rom
n-bit ripple adder
n b i t fast adder
n-bit priority encoder

- n-bit register
nxm multiplier
n-bit comparator
n-bi t synch counter
n-bit ripple counter
n-bit by m:l HUX

4.9. Observations
Our research thus far has demonstrated the usefulness of the PPL methodology as a higher

level design technique for hardware analogous to the use of assembly language for computer
programming. The analogy has been extended by the introduction of ASSASSIN, a first-
generation silicon compiler for speed-independent finite state machines.

•

I

Second Semiannual Technical Report page 13

Our design system has proven useful for doing actual design of a variety of integrated
circuits. It has reduced design times required by an order of magnitude. Resultant designs
are easily simulated and corrected due to their symbolic repref-entation. System designers
with little or no direct experience with integrated circuit design can do actual IC layout

V.

■Mfl

• ■

Second Semiannual Technical Report page 14

5. Project Bibliography of Papers, Reports and Theses
This section contains a cumulative list of the papers, reports and theses regarded as direct

or indirect "products" of this Project. Subsequent semiannual technical reports will contain
updated versions of the list given here.

[I] Carter, T.M.
A SSA SSIN: A n A ssembly, Specification and A nalysis System for Speed-Independent

Control-Unit Design in Integrated Circuits Using PPL.
Master's thesis. University of Utah, Department of Computer Science, June, 1982.

[2] Carter, T.M.
A SSA SSIN: A CAD Systempr Self-Timed Control-Umi Design.
Technical Report UTEC-SZ-lOl, University of Utah, October, 1982.

[3] Drenan, LA.
On Transforming Ada to Sili^n.
M aster's thesis, University of Utah, Department of Computer Science, August, 1982.

[4] Drenan, L.A., Organick, E.I.
A da to Silicon Tmsprmaiions: The Outline of a Method.
Technical Report UTEC-e2-0l6, University of Utah, Dept. of Computer Science, Sept,

1982.

[5] Hayes, A.B.
Self-Timed IC Designs vrith PPL's.
October, 1982.
Paper submitted for 1983 Cal Tech VLSI Conference.

[6] Nelsor.B-E.
ASYLIM User's Manual
1982.

[7] Nelson, B.E.
ASYLIM ; A Simulation and Placement Checking System for Path-Programmable

Logic Integrated Circuits.
M aster's thesis, University of Utah, Department of Computer Science, October, 1982.

[8] Organick, E.I., and Lindstrom, G.
M apping high-order language units into VLSI structures.
In Proc. COMPCQN 82, pages 15-18. IEEE, Feb., 1982.

[9] Organick, E.I., Carter, T., Lindstrom, C, Smith, K. F., Subrahmanyam, P.A.
Transformation of A da Programs into Silicon. SemiA nniuil Technical Report.
Technical Report UTEC-82-O20, University of Utah, M arch, 1982.

[IC] Organick, E.I., Carter, T.M., Hayes, A.B., Nelson, B.E., Lindstrom, G., Smith, K.,
Subrahmanyam, P.A.
Transformation of A da Programs into Silicon. Second SemiA nnuat Technical Report

(to appear).
Technical Report UTE0-82-103, University of Utah, November, 1982.

[II] Ramachandran, R.
A Complexity Computation Package for Data Type Implementations.
M aster's thesis. University of Utah, Department of Computer Science, June, 1982.

[12] Subrahmanyam, P.A.
From Anna-r- to Ada: Autonjaiing the Synthesis of Ada Package and Task Bodies.
Technical Report Internal Report, University of Utah, March, 1962.

[13] Purushothaman.S, and Subrahmanyam, P.A.
An A Igebraic Model of Seitz t W eak Conditions pr Self Timed Systems.
Technical Report UTEC | 82-066. University of Utah, October, 1982.

Second Semiannual Technical Report

[14] Subrahmanyam, P.A.
Lanpwge Issues in Transformatum Systems (to appear)

_ ^^ ReP°^UTEC# 62-069. Univereity of Ütah. November. 1982.

page 15

[15] Subrahmanyam, P.A. andRajopadhye S
Automxaed Design of VLSI Architectures: Some Prelimmary Explorations
Techmcal Report UTEC #82-067. university of Utah. O^ber (Re?S'i982.

[16] Subrahmanyam. P.A.
A Theoretical Basis for the Synthesis and Verification of Systolic Designs
I ec^jl Report Internal Report. Dept. of Computer Science. Univellity of Utah.

[17] Subrahmanyam, P.A.
0ni^r?^°ssÄ ÄST"*' ^^ ** ""^^cm***'

[18] Subrahmanyam, P.A.
Automatable Paradigms for Software-Hardware Design; Language Issues

OctobeVfge? W'0r^0P ^ ^^^ ^^ ^«^ffiEE.
Also available as Univereity of Utah Technical Report UTE0-82-096. September

[19] P.A. Subrahmanyam.
An A^matic/Interactive Software Development System: Formal Basis and Design.
North-Holland, Amsterdam, 1982, . resign.

[20] Subrahmanyam, P.A.
Abstraction to Süicon:A New Design Paradigm for Special Purpose VLSI Systems '

1982) P * 82"<)65, Univereity of Utah. January^igei (ReviÄ «Ty
Submitted for Publication to IOCS.

[21] Subrahmanyam, P.A.
An Algebraic Basis for VLSI Design
DnS Comn^f1? M ^«»P11-April 1982 120 pp. Available from the Department

of Computer Science, University of Utah.

c

7— imimmim """■""""^ m

Second Semiannual Technical Report jiage 16

6. Appendix

Rd«-to-SI I icon Project
Ur. i vei-E i t y of Utah:

DoD Internet Protocol INn_DUT submodule

fid« code to- the body of task ReaD_1nit_Parameters
Version of October 25, 19S2

separate (Inin_0u t .Flodu I e)

f

task body Read_inIt_Paraneters is

— Recessed globals:

-- numbar_of_local_net_types_of_Eervice:
— local_net_type_o<_Eervice_table_ron_size:
— tos_tab Ie :

— Renamed task entry:

octet_type
octet_type
octet_buffer_typj

The package nernory_l1odule containing the task flemory holds
to-be-sent datagrams as well as initialization parameters
needed by INfl_0UT.

piocedlire nemory_r eques t (
requeEt_type_torm«I:

chunk cf_address_formaI:

octet_<orm6l:

renames flemory.Request;

■ Local variable declaration

menory.request_type ;
— Load_addrdss or reee i ve_da t UIII_OC t• t .

chunt;_of „address „type;
-- Don't care when request_type_formaI
— race i ve_da tu»i_oc t e t.

out octet _t ype)
-- Don't care when Ioad_address .

— The following variable Is commented out. It 4ppeared only in the
— "high-I eve I " used to read in the TOS table. See below.

number_of_toE_tabIe_octets: integer range 2 .. max_tOE_tab Ie_size - 1;
octet_register: octet_type;

begin
loop

accept Go(
i n i t n um_f orma

do

bl tit

response: out out„response)

response := Eer;t_ok;

-- For Carter's paper
-- only; otherwise bit3

-- fiIs o means i nIt _ok,

-- Get from the server all of the addr_chunks needed to form the base
-- address in memory that holds the Initialization parameters and
-- sends these chunks to the flemor-y module.
for index in 1 . . init_num_for ma I
loop

accept Srv_req (-- Get next address
-- chunk from the
-- Server flodu I e .

server_command_datuiii! srv „command;
rasponte_to server: out out„response)

do
neiiiory_requeEt(--Put chunk out to the

— nemory module.

w — ^FW

Second Semiannual Technical Report
page 17

rtquts t_t ypt_<orBi« I => I o«d_iddP««« ,
chunk o< addr»«f _<or«« I =>

Convirt_iPV_ccBimand_to_chunlt_of_addpei«

(«trv«r_c<]iiimand„datum),
= > dont_cap«_ocl»t); oc 11 t_<opmaI

end SPv_paq;
end loop;

initialization papamattPS (containad in tha

-- nextS octets pecaived) fpom th» riamopy tlodula.

for i n d • x in 1 • • 8

— Gat tha 6 i nd i v i dua I
-- n(
for i
loop

Remopy_Paquast(
paquast typa_fopmaI = > pacaiva_datum.octat,
chunk oT 8ddpass_fopinai => don t _capa_X_da t L »i,
oct«t'fop«-.al => octat_pagistap>;

case index is
when 1
when 2
when 3
when *
whea 5
when E
when 7

= >
= >
= >
= >
= >
= >
= >

I niii_max_pacKat. to
I niii_max_pacl(e t . h I
I nrr_addpeES_ length

I nm_t i Bia_ou t. I o
I nBi_t I lne_ou t. h i
aclt_t y pe

: = oc iet_peg istep;
: = oc tat_peg i s tap;
j = oc te t_peg istep;
; = oc ta t_peg i s ten;
:= octet _pegistep;
; = oc tet_peg i step;

when 8 = >

end case;
end loop;

-- Convert the
-- t i nie_ou t _i n

local net type_o<_sepvice_tab Ie_Pon_sila
: = octe t_peg istep;

numbep of I ocai_net_types_ot_sapvica
: = octat_pag istep;

-- Read typ

local net timeout into milliseconds.?
milliseconds := lnB_ti»e_out / 1888.8; ■

 Left-hand side vaniable declapad
 In Inn_Out_nodula. Value is used
 later In Oo_sand ppoeedupa.
 Note: Davis nevep did this in
 hit. design. Is this step needed?
 Kol Ue don't need this step
 since the quotient can be
 approximated by a div by 2»»18
.- in tha even« ue need to
-- represent milliseconds.

e of service tnanslation table.

The f oI lowing code i n
"louep-level" vepsion
implementation chosen
for a multiplier.

number_of_tOE_table_octets :

comments is peplaced below by a
that closely peflects the hardwape
in which we eliminate the need fop

local_net_type_of_$«pv ice.table.pow.sixe
t nuitiber_of_local_net_types_of_sepvicei

- Check to see if pequined table sire exceeds maximum
if numbep_of_tos.table_octets > max.tos_tab Ie_s.ze then

response ;= bad_srv_command;

return;
end if;

ton index in
I oop

numben_of_.-«_table.octets

.da tum_oc tat,
nemopy_peques t t

pequest type_fopmal => receive,
chunk of addpess.fopmal => don t_cape_X_da turn,
octeOopmal => t os_t ab la (i ndex)) ;

end loop;

i

■PWIH mmmmmm ■"««I«I1W* ,imiw!iiwiiii « ii mm

■

Second Semiannual Technical Report page IB

declare
row.number: integer range 8 .. number_o<_loc«I_net_types_o< ».rvict;

col number: integer range 8 ..
loc«l_net_type_ot_service_table_rou_size;

index: integer range 8 . .
nuniber_of_loca l_net_types_ot Bervice
• local_net_type_o<_service_table_roH_»i2«

-- Outer loop reads all rowi o(TOS table.

begin
row_number := 8;
loop

col number := 8;
j0 _. Inner loop reads in one row o< TOS table.

nemory_reques t (
request_type_f orma I => r ece i ve_da t uir_oc t e t ,
chunk oT_address_f orma I => don t_care_X_ca turn,
octetlformal => t os_t ab I e (i ndex)) ;

col number := col_number + 1;
exit" when co I .number = I oca I _ne t _t ype_o<_Eerv i ca_t ab I e_rou_s ire;

i ndex : = index + 1;
if index > Kttx_toE_t ab I e_s i ze then

response := bad_Erv_coii.mand;
return; — Exit the current accept statement.

end if;
end loop; — E"«1 inner loop.

row number := rou_number + 1;
exilTwheD row.number - number_o f _ I o ca I _ne t _t ypes.o < _ser v i ce ;

end loop; — End out,r looP-
end;

end 0 o;

end loop;

end Reati_In i l_Parameters;

— End dec I are b I ock.

— End of in it processing.

-- End of outer-most (inifinite)
-- Ioop.

i*~~''"'- _

mmim

t Ü l

Second Semiannual Technical Report page 19

References

[1] R.E. Bryant
Logic Sirnxdction of/J OS LSI.
PhD Disseration Proposal, Massachusetts Institute of Technology, January. 1980.

[2] R.E.Bryant.
A Sxvüch-Level SimuLatUm. Model JOT Integrated Logic Ctrcuite.
PhD '-hesis, Massachusetts Institute of Technology, 1961.

[3] T. MC arter and K.F. Smith.
Applicaüons of Logic Arrays in VH SIC Design
March, 1981.
QUmer>!ynTeChSiCal ^e?0

rr
t ^ from Ü16 VLSI Research Group at the University of

Utah, Department of Computer Science, to Boeing Aerospace Company.

[4] T. M.Carter;K.F. Smith; C.E. Hunt; and V.L. Howard
Applications of Logic Arrays in VHSIC Design
June, 1981.
QUaTuerv!ynTeCh^iCal Report ^ from ^ VLSI Research Group at the University of

Utah, Department of Computer Science, to Boeing Aerospace Corporation.

[5] T. M . Carter; K. F. Smith; C. E. Hunt; and B. E. Nelson.
Applicationsof Logic Arrays in VHSIC Design
September, 1981.
Quarterly Technical Report #4 from the VLSI Research Group at the University of

Utah, Department of Computer Sdeuce, to Boeing Aerospace Corporation.'

[6] Carter, T.M.
ASSA SSIN: A CAD Systempr Self-Timed Conbrol-Unit Design
Technical Report UTEC-62-101. University of Utah, October, 1982.

[7] T.M.Carter.
ASSASSIN. An Assembly, Specification and Analysis System for Speed-Independent

Control-Unit Design in Integrated Circuits Using PPL.
M aster's thesis. Department of Computer Science, University of Utah, June, 1982.

[8] Richard M . Stallman.
EU A CS U carmai for TV/ EN EX Users

Massachusettslnstituteof Technology, A rüfidal Intelligence LaboratoT7, 1980.

[9] A.B.Hayes.
Stored State Asynchronous Sequential Circuits.
IEEE transactions on Computers C-30(e):596-€0C, A ugust. 1981.

[10] A Ian B.Hayes.
High-level Logic Design of the DoD INM-OUT Module
April, 1982.

[11] Hayes, A.B.
Self-Timed IC Designs with PPL's.
October, 1982.
Paper submitted for 1983 Cal Tech VLSI Conference.

[12] Krieg-Bruckner, B., Luckham, D.C., von Henke, F.W ., Owe, 0.
(Draft) Reference Manual for Anna, A languagefor Annotating Ada Programs
Unpublished, Reviewer's Copy, October 1982.

[13] Lindstrom, G.
Internet Protocol Case Study: Background and Initial D^sien
May, 1982.

c

o

 '

mmmmmmmmm

Second Semiannual Technical Report
page SO

[14]

[15]

[16]

[17]

[IB]

[19]

[20]

[21]

[22]

[23]

Lindstrom; G-^rganick. E.I., Klass, D., Maloney, M
^^a*M^^«^ internet Protocol: The INM. 0 UT Submodule. Beport

Technic*! Report, Departm^bK^puter Science, University of Utah, November.

B rent E. N elson. ""^-^
SLED Users Manual ^\^
1982. ^--.^^
Department of Computer Science, University of Utah. ^^\.

[24]

[25]

[26]

Brent E. Nelson.
ASYLIM User* Manual
1982.
Department of Computer Science, University of Utah.

Brent E. Nelson.

A ToJfc:ittÄÜcTrStPIareinent "^^ SyStera f0r P^-^ammable
Master's thesis. University of Utah, October, 1982.

Organick, E. I., and Lindstrom, G.
M apping high-order language units into VLSI structures
In Proc. CCMPCON 82, pages 15-18. IEEE, Feb., 1982.

Organick, E.I.. Carter, T.M .. Lindstrom, G.. Smith. K.F., Subrahmanyam P A
Tr^forr^n of Ada Programs vnioSüicon. SemiAnnvM SSiSwrt'
Technical Report UTEC-82-O20, University of Utah, M arch. 1962

Postel, Jon: editor.
Internet Protocol: DARPA Internet Program. Protocol Specification
lechmcaJ Report RFC 791, Information Sciences Institute. USC, Sept., 1981.

K.F. Smith.
Implementation of SLA 's in NM OS Technology

to^ll^Umi*1 /n'emaiW Confirenee. EdvnbvrgK, UK. pages

K.F. Smith;7. M. Carter; and C. E. Hunt
The CM OS SLA and SLA Program Structures.
In H i. Kung; B. Sproull; and G. Steele (editor), Proceedings of the 1981 CM U

Conference on VLSI Systems and Computatons. pages 396407. Computer Science
Department, Camegie-W ellon University, Computer Science Press OrtoberlJeT

K. F. Smith.
Design of Stored Logic A rrays in I2L
113 ?a0

e
C"T?^^Y^^FfF;^££

)
/nter3lf0na' 5^^— Circuiis and Systems,

Subrahmanyam, P.A . and Rajopadhye S
Automaied Design of VLSIArchüeciures: Some Preliminary Explorations

1 echmcal Report U . EC # 82-067. University of U tah, October{Revised),' 1982.

Subrahmanyam. P.A.
From A nno+ to Ada: A utomaiing the Synthesis of A da Package and Task Bodies
Technical Report Internal Report, U niversity cf U tah, M arch!l982.

Purushothaman.S, and Subrahmanyam P A
Algebraic Modeling of Self Timed Systems
Technical Report UTEC #82-066. University of Utah, August. 1982.

mmmmmmm mmmmmmmmmmmmm. wmmmmmmmmtmi'^'f'mwKnm

b b I

Second Semiannual Technical Report page 21

[27] Subrahmanyam, PA.
A Theoretical Basis for the Synthesis and Verification of Systolic Designs
Technical Report ÜTEC-62-087, Dept. of Computer Science, University of Utah, June,

1 Hoc.

[28] Subrahmanyam, P.A.
Trxmsformational Implementation of Sofiware/Hardware Systems: Global Strateav

Guidance. "
Subrnitled for Publication, University of Utah, January, 1982.

[29] Subrahmanyam, P.A.
An Algebraic Basis for VLSI Design.
Draft of a Research M onograph, April 1982. Available from the Department of

Computer Sdenoe, University of Utah.

[30] J.E. Voider.
The CORDIC Trigonometric Computing Technique.
IBE Transactions on Electronic Computers Volumn Number Unknown:330= 334,

September, 1959.

[31] Wile. Dave.
POPA RT: A Producer of Parsers and Related Tools, System Builder's M anual
June 1980.
Unpublished, USC/ISI.

.

(

o

r

I I «I- ,i ii.UWill i. wuuwuwwi JL. uiiiiawiiwa* I .Jl IU1UJ1)P8PBIWBW!W,"..1 Uliini

ASSASSIN: A CAD System for
Self-Timed Control-UmtDesign

Tony H.Carter
D epartment of C omputer Science

University of Utah
Salt Lake City. Utah 84112

October 1962

Abstract

Many software systems exist for automatically implementing synchronous state-machines.
Presented in this paper is a software system — ASSASSIN — for the design and automatic layout of
self-timed (or speed-independent) control-units as integrated circuit modules. ASSASSIN provides
for the editing of textual descriptions of control-flow, the functional simulation of speed-independent
control-units, and the automatic layout of the implementation as a Path-Programmable Logic (PPL)
program. ASSASSIN uses a well-known technique (a one—hot stale encoding) for implementation of
the control-unit. Examples are given illustrating the specification and implementation of simple
state-machines. In addition, the design of a slate-machine of interest in the University of Utah's
A da-to-Silicon project is carried out A portion of the A da code for the "Output Side" of the Inter—
Net-M odule (INH_ OUT), which will eventually be fabricated as part of the A da-to-Silicon Project, is
converted by hand to ASSASSIN input format and from there to an integrated circuit layout by
ASSASSIN, thus illustrating the use of ASSASSIN in the context of the A da-to-Silicon ProjecL

This work was sponsored in part by the Defense Advanced Research Projects Agency (DARPA)
under contract number H DA 903-61-C-0414 . •

1. Introduction
The development of CAD tools for integrated circuit design has exploited a vast body of knowledge

about synchrone JS computing systems. Old and new integrated circuit .■chnologies have been well-
suited for implementing synchronous computing systems. The success of these synchronous systems
has been prodigious as witnessed by the recent booms in the manufacturing and purchasing of com-
puting systems. Current research in semiconductor devices is rapidly heading toward the ability to
construct computing systems which operate orders of magnitude faster and which are far more com-
plex than those currently available. ASSASSIN treats part of problem of designing self-timed sys-
tems.

W ith projected room-temperature speeds of logic devices n.nging down to tens of picoseconds of
delay time [3], it appears that the postulate advanced by Seitz in Chapter 7 of Introduction to VLSI
Systems [7] will be borne out. The contention is that the current methods of system synchronization
(global clocks) will result in unreliable circuits as device speeds increase and as device switching
energies decrease.

If Seitz is indeed right, the newer and faster integrated circuit technologies will require computing
systems to be implemented using something like "Self-Timed" or "Speed-Independent" logic. In
these types of logic, only sequence is of concern. The actual gate and wiring delays will not affect the
function, only the absolute speed. It should be noted that any asynchronous device requires that the

'A de is B ragiftared trademark of the U.S. Covamment, A da J oinl Program 0 flioe.

hkJ riAflM^^^^^

mm mmmmm*** mmmmmmmmmwmmmmmimilim 'M™1111 ' mmm^rn

ASSASSIN

suirounding environment to be suitably conditioned so as to tolerate the "un-synchronized" actions
of the device.

M uch work has been done in the implementation of synchronous structures in integrated circuits.
CompuUng systems can be divided into two main parts: control and data-path. Universities and
mdustiy alike have produced many methods for generating synchronous system control, some using
the PLA. V ork has and is being done in the automatic generation of synchronous data-paths f9]
V hile there have been some successful efforts to construct self-timed or speed-independent comput-
ing systems such as DDH 1 [2] and ILLIAC II [6]. there has been very little work done on the im-
plementaUon of self-timed computing systems in integrated drcuits. This may be because there
were few integrated circuit implementation strategies which readily lent themselves to the construe-
uon of self—timed circuits.

.cTT^erdT,0Pment ^ ^^«««^W« Lofiic[l] (PPL), a derivative of the Storage/Logic A rrey
(SLA) [lOj. has proven to be of great value in the generation of self-timed control in integrated
circuits. ■

ASSASSIN is part of a research effort, being pursued at the University of Utah, to convert Ada
programs into integrated circuit implementations. ASSASSIN transforms the control portions of Ada
programs into their corresponding integrated circuit counterparts. In addition. ASSASSIN ft]
provides a software tool for the specification, simulation and compilation of self-timed control-units
to integrated circuit module layouts. As such, it begins to treat some of the low-level problems of
self-timed systems design. It uses PPL as the integrated circuit implementation strategy and a
one-hot encoding of the control states [4] as * mapping from the specification to the drouit
implementation. It allows an implementation independent spedfication of control (that is inde-
pendent of fabrication technologies and drcuit implementation techniques), and provides functional'
simulation capabilities. Layout generation (analogous to the software compiler oo*) generation) :

results in self-timed drcuits which functionally match the results of simulation. ASSASSIN also
provides a single, convenient user interface for all of its functions.

2. The Specification of Control: Syntax
The spedfication of control for a given drcuit can result in a labelled, direded graph similar to the

one in figure 2-1. There are named nodes which are called states and labelled directed arts whidi
are called transitions. Assodated with states are operations on output variables. These operations
may be fundions of only the state, or they may be functions of the state and a boolean function of a
set of input variables. Transitions are labelled with a boolean funrtion of members of the set of input
vanables which dictates the condition upon which that transition will take place. Transitions may
also have associated operations on outputs (M ealy M achines).

The ability to spedfy stridly sequential control is certainly essential. Although our current un-
derstanding of concurrent processing is very limited, the ability to handle concurrent paths of control
may also prove to be useful as our understanding increases. Concurrency (in the context of control)
can be interpreted in two ways. The first is where two separate machines operate independently
communicating via some signalling protocol. The second is where a single machine performs some
types of concurrent processing by having concurrently executing control paths. The firet is handled
oy having control-units composed of multiple state-machines. In terms of graph«, this implies that
one can draw many separate graphs, whose» interconnection is implied by output and input variable
names. The second is handled by allowing, within a single state-machine, some notion of forking to
begin concurrently executing control paths and a notion of joining to terminate concurrently execut-
ing control paths. The addition of the concepts of FORK and JOIN to the graph model of control-flow
is illustrated in figure 2-2.

Output generation from a control-unit can be either enduring or ephemeral. Enduring outputs

2

-~A~-—^-"^— --'■- 1 ' ■-

■Jin i.in!wiip -WHBH tmmmm^m

ASSASSIN

\l/ ±
-*HXJU cuirur-i

«•UTrl

Bg
^

•> HOIS/ o/njr-z

iwr-t

eg
^1

Figure 2-1: A Simple Control-Flow Graph

are latched and operated on by SET and RESET only. W hen an enduring output is SET it will
remain on until a'RESET operation is performed. Ephemeral outputs are gated and remain on only
while the required condition is met (either residence in a state or execution of a transition). They are
operated on by H 0LD.

Figure 2-3 contains a control-flow graph which contains all of the features induded in the discus-
sion above. States are represented by rectangle» with the name of the state indicated in the upper
left comer, follovfed by a colon. Output generation is indicated by a right-arrow. To the left of the
right-arrow will be a boolean expression and to the right the operations to be performed and the
names of the outputs which are to be operated on. For example. State B contains three output
operations. The first is unconditional (it depends only on the state of the machine) and causes the
ephemeral output "01" to be held true. The second is conditional (the boolean expression is "13") and
causes the enduring output "03" to be SET. The third is also conditional (the boolean expression is
"14 OR 15") and causes the ephemeral outputs "02" and "05" to be held true and the enduring output
"04" to be RESET.

Also required in the specification of control is the concept of an initial stale. In the graphs, this is
indicated by the arc labelled M asterResel which has no state node at its tail.

In summary, the specification language for control should indude the following features:
-the concept of an initial state.

—simple transitions from one state to another (M OVE).

—transitions from one state to many states (FORK).

—transitions from many states to one state (JOIN),

-outputs controlled only by residence in a state or by the execution of a transiUon.

-outputs controlled by a boolean combination of inputs AND by residence in a state or by
the execution of a transition.

■niiiMii -«""MM ■ .«.«.«M.MIM H^UIWII.MMI.1,,, ,mu nmmmmmmmmm

ASSASSIN

^L
Fg

JWT-J

GS
^kL

Figure 2-T2: A Control-Flow Graph W ith Concurrency

,-■ '%-> ■•«*"
-,.i i mint

"*"— MRP
"""'"' ■IL" ' """"""^

mmemmm mmmmm^m\immmm».wmmmm^mmmm'mmmm^'^mi

ASSASSIN

«.II AND (12 OR NOT 13)

BIS

^L
cD

D

-» HXD/ Olf

-.»«

^kl
BS

-> MOD/ 01)
ii -» atr/ tui
u CR it -> rasrr/ MI

KU>/ 02,OS»

ic
•» RESET/ 05}

Big -> WEH 041
14 / II

■£gr

H 1 ti

iiASTCR-nacr

\/ \/

AS
•> KXD/ OK U)
-» RESET/ 01)
-» BET/ 041

>
DS

-Jl

•«IB

$L

17
-> scr/ oj

it

Figure 2-8: A Complex Control-Flow Graph

i

«fJW^PMWWSPW^WJPP^PipiWBIiWPSWIipPIBipip^^

ASSASSM
I

—arbitrarily complex boolean expressions for conditions (controlling transitions and output
generation),

—lambda transitions (where the condition is the tautology TRUE),
—ephemeral outputs,
—enduring outputs,
-multiple and varied transitions from a given state,
—multiple and varied transitions to a given state, and
—multiple state-machine control-units.

The task now is to codify the points listed above, such as in a grammar in BNF. It must allow far
all the points listed above while limiting its expressive power to those points. The language must be
easily parsed and it is desirable that parser generators be used to generate the code for the parser.
A bove all, the language should be concise and intelligible to design engineers.

The complete BNF for the language (which is called CUDL) is included in Appendix I. The lan-
guage has the ability to represent each of the points listed above. There are four types of blocks In
the language. The first is the CONTROLUNIT block. This block indicates the name of the overall
control-unit and certains STATEUACHINE blocks. It also indudes the specification of "global" input
expressions which assign boolean expressions to an internal variable which can significantly reduce
the size of the code written to describe the control-unit. The names of "global" inputs can be used In
the descriptions of transitions and output generation. Figure 2-4 contains the CUDL code describing
the machine whose graph is in figure 2-3.

centrolunit CeapilaTaitS:

inputs: SIC is II and (12 or not 13);

■alftlaad ctataaaehina TaitSi
startctata fl:

forkon BIG to B,Cj
Movaon NOT BIG to D;
hold 01,02;
rasat 03;
tat 04;

and;

ttata Bi
Joint C on 14 AND IS to F;
Joint E on 14 OR IS to F;
hold 01;
if 13 than tat 03;
If 14 OR IS than bagln ratat 04; hold 02,05; and;

and;

ttata Cs
■ovaon NOT 16 to E;
Joint B on 16 to F doing bagin ratat 03;

If BIG than tat 04; and;
hold 01;

and;

ttata Oi
novaon 17 to F doing tat 03;

and;

ttata Et
Joint B on TRUE to F;

and;

ttata Fi
•ovaon IB to fl;
■ovaen NOT IB to 0;

and;
andj

and.

Figure 2-4: CU D L Code for the Graph in Figure 2-3

•

tmfjmnifmm.im mmimmimwmmmmimWMnm'-J'immmmm -^-^mmmmm^mmmmmm

t

ASSASSIN

Eventually, given an appropriate display device, a graphical versicn of this language coidd be
developed and the specification of control could be done in terms of "ntroMlOTJ™plu ^^^
textual description of the graph. A project is underway to implement such a front end to ASSASMK

on an A polio D 0 M A IN computer.

3. The Simulation of Control: Semantics A

Given that the syntax of control-unit specification Is defined, the designer must dso understand
the semantic* in order to use the system. The semantics of control is directly influenced by the

, tmplementation strategy selected Since the specification of control should allow for concurrency
within a given state-machine, a scheme which allows the implementation of such concurrency must
be selected. The notion of concurrency eliminates the possibility of completely and uniquely encod-
ing the state variables. The one^ot implementation scheme (completely decoded) allows for easy
implementation of concurrency. The following discussion is largely based on the assumpüon that a
one-hot Implementation Is used

The specification syntax described In the previous section can be Interpreted in three »^ ™
Interpretation depends on the particular mapping strategy being used in the compilation The three
possible types of mapping are synchronous, asynchronous, and self-timed. In order to allow to all
three Interpretations to be eventually simulated and compiled, the language Indudes the "ncept of a
stat«nachlne type. The choice of a state-machine level semantic Interpretation s made expl dt
through the use oVthe keywords: SELFTIUED. ASYNCHROKOUS. and SYNCHRONOUS.JnJhi^ way. the.
u£ L spedfy various types *f control using the same system. Only .the SELFTIUED opüon is
currently Implemented In ASSASSIN. . • .. ' , t *

The simulation of self-timed control can be functional in nature. This funcüonal «nmlaüon.
provides knowledge about the sequential function of the drcuit Since the J^T"^»^ .
dmUt is such that If sequence Is ccrred. iunctlon Is corred. the user Is sure that the circuit will
work If the environment In which he places It Is conditioned to Interart In a self-timed manner with

the control-unit. . .. » _ AmimtimA
The simulation of synchronous and asynchronous control really requires the use of a detailed

timing simulator. This simulator must be able to make accurate delay calculations based on van-
able gate delays. In the world of the Integrated drcuit. these delays may or may not be ea.-'ly
LlLated sincTlong wires and heavy loads will significantly alter the ^«^ rf «^^
Thus, the problem of simulation for these types at systems Is much more difficult that for the «»If

"To'i^t the semantic adions of the control-.nit. one must know first the adions to be taken
to execute a transition and second how outputs are generated. Transitions are ^^ ^
change the internal state of the machine. Although there may be many ^°" J»*^
leaving a given state, it should never be possible to execute two ^™^ ™^\t™**
same state Since the control^nit has no control over the .equence of arrival and the ^ * *«
inputs that trigger transitions, the problem of having two transitions executed ^u'teneously Is
nLently a dynamic one and its avoidance requires a detailed knowledge of the -^^\to

Uld. the control-unit is to be placed. If two transition were executed f1«1*^^^
would be a state^nachine whid: would be In two sequential and mutually exduslve states at the

"TheTree Interpretations of control have somewhat different vl^s of ^lüons. T^o^
implementation uses transiüons that are essentially handshakes between logically »^ ^
S chamderisüc can be portrayed by a "token^assing^iachlne". with P^«r«-* ^
controlled splitting and recombination of tokens (FORK and JOIN). In a translücn »J^» "£•*
Td state B state A will first set state B and then state B will reset stete A. Consider the case (figure

"— "' »•■""•'• MPPM ■ mwm, i imm

atr A 3CTB

ASSASSIN

ETC

Figure 3-1: Handshaking States

3-l)whereamadiineoontainsfoursequentialstatesA H r«T,Hr, A

r.r^ -rr: r^r r ■■ "•"-"" •," ** ^ - • •- -«• ^ -«- -
iiltSTX^ ""T ""'"^ i,"^,«U- "' -"« «™n- .h.t t. do .bout Uü,

Lookin£ from inside the control-unit, there are two types of outputs The flnrt I. «,. «V.
6ated output. It is turned on oniy while the ^ro^JZJ^L^Tel^ t^Z

rivei JL oT7his 'T of output is a3iitroiied by -^ - ™ > ^r«i^fx level is maintained even after the appropriate condition has disappeared It is pcBsible hZ~Z \
place a latched output in a metastable condiüon by trme to set arr-Tu M V, I '
care must be taken in working with latched output " ^ ^ "** ^ S0 ^

tJ^ir™"011*0!- ^^ ^ a 00ntro,-unit is ^«y conditional upon something W hat we
tenn as an unconditional output is an output that depends only on being in a narticZ^Lf! 1 o!
on a particular transition bein« executed V hat w* Um .. on oeing m a particular state or only
,f«fD«^»~ •.• u . ,8fiatwelennasacondltionaI output depends not only on state or trens.Uon. but also on a boolean combination of input variables *

of a^sitlr1 T^ T 0PTted 0n immediate,y W» entry into a state or upon the execution
of a transition Also, ephemerel outputs which are unconditionally operated on from a stl or
trensiUon must be released when the state is left or the transition is JmpTeted ' ^ ^ " State ^

Conditional outputs are operated on when the enure condition becomes true indudln, entry to a

longer met or the state is left or the trensiUon is compTet^ ^ ^^ ^^ iS n0

(

HUHftM MMMh« —Maii»M«i», maimiw» mni»

.i»!»....,„,„..„....« - - Mm,<.m*m,m*,mm

I:
I ASSASSM

Bemuse of the handshake going on between logially adjacent rtates. the« is a small amount of

toTe 0 RT^ ^ll8 leßally in 52 StateS ^ ^ ^ Uia* ThiS all0WS f0r ePheme«» output, to be ORed in a ghtch-free manner between logically adjacent states. Enduring outputs controUed

^T* M]T f ."" ^ " Pr0blem " b0th a *•* ^ reset are attemPted «» ** »^e üme - the output latch wall temporarily be placed in a metastable state, possibly advemdy affecUmj the
surrounding 'envirgnment ««« «w

In ASSASSIN, there is no implicit communication between any two state-madüne, spedfied a,
part o the same control-^nit All such inte^tate-maAlne communicaüon is accomplished by
exphcit signalling protocols ucing inputs to and outputs from the state-machines.

4. The Implementation of Control

The actual physical implementation of control depends on two factors: the drcuit implementation
techruque and the control-^nit implementation technique. The circuit implementation technique
should be picked so as to make the physical realization of the contrd-^it implementation technique
as simple as possible. ~"uHuc

The selection of a control-unit implementation technique depends on the set of features to be
implemented. Thus employing FORK and JOIN prohibits using a monolithic completely encoded
control-^mt. Including FORK and JOIN in a control-^nit implementation technique «quires either a
very complex strategy for splitting out the concurrent secüons of the control into physically (and
perhaps logically) separate sections, a partially encoded scheme whero the sequential control secüons
are encoded and the concurrent are not. or a completely decoded machine. The one-hot implemen-
tation is a completely decoded scheme in which FORK and JOIN are easily included. The tradeoffs
involved m selecting the one-hot strategy are discussed by Hollaar [4] " •

Basically, the one-hot strategy involves the use of one latch for each state, two gates for each
transition, a latch or driver for each output, and one gate for each condition controlling conditional
output, from a given state or transition. For complex machines, the automatic full^custom layout of
a one-hot control-unit could be very difficult.

Path-Programmable Logic provides a very regular structure that is particularly well suited for
implementing one-hot control-^nits. In the mapping of control onto PPL using a one-hot encodimj a
single latch is used for each stale variable. Each transition maps to two PPL row segments, one'to
set the next stale and the other to reset the current state once the next slate has been set In
addition, complex boolean conditions on transitions (or on outputs) may require the introduction of
temporary gates. In PPL. the AND of several inputs is detected on a single row. The OR is formed
on the columns. For this reason, extra PPL columns containing temporary variables must be in-
s«-ted for forming the OR terms of boolean expressions. Outputs are controlled by using a single
PPL row to dnve all the unconditional outputs oontrolled by a state or a transition. Each separate
condition for controlling conditional outputs uses a single PPL row.

4.1. The Implementation of Control: Floor Plan
W ith the basic mapping strategy defined above, we soon see that there are many ways to spedfy

the global organization or floor plan of the oontrol-unil. The one selected for use in ASSASSIN was
chosen because it appears to be simple. This floor plan (see figure 4-1) has the state latch«, tarn- '
porary variable inverters, and input inverters in a single band across the middle of the controMinlt
Output latches and inverters are placed In a band across the top of the control-unit Inputs airive
from the bottom of the control-unit and outputs are emitted from the top of the control-unit This
stacking of inputs and outputs results in a significantly smaller area and is a direct consequence of
usmg a PPL-Iike structure for the drcuit implementation. State transiUons are generated in the

mmmmmmmmmmm 1 ' "W

ASSASSIN

bottom half of the control-unit and boolean expressions and outputs are generated between the itatc
latch band and the output band It is possible to make other area optimizations in the PPL layout of
one-hot control-units.

Output Latches and Gates

Boolean Expressions
and

0 utput Generation

State Latches, Input/Temp Gates

Transitions

Figure 4-1: Global Organization of ASSASSIN Output

This global organizatioii results in a simple PPL generator that needs no routing tools for con-
structing the control-unit A11 the PPL generator has to know is which cells to place and where to
place them — an easy problem when compared with routing.

4.2. The Implementation of Control: Code Generation
W e have now almost fully specified the entire system. Ail that remains is to actually construct

algorithms for generating PPL programs that implement the control-unit. The self-timed control-
unit requires the use of latches for representing states. These latches must indicate their change in
state after the set or reset signal has arrived. The PPL cell designed for this purpose is the four-wire
latch. It contains cross-coupled NHOS inverters for the latch with inverting-buffered outputs.
Thus, this cell cannot signal its change in state until after the latch has changed state. ASSASSIN
can currently generate either a GIF description of the control-unit or a file written in
Computervision's CADDS2 External Data Base format.

The transitions for a self-timed control-unit require two row segments. The first senses that the
machine is in a certain state — say state A, thai all possible predecessor states (states which could
have caused a transition lo state A) have been reset, and thai the condition for the transition is met
If all these conditions are met, the latch for the next state is set. If there are outputs controlled by
the transition, an inverter is used to appropriately control output generation from the transition.
The second row segment detects that the next state has been successfully set and resets state A.

Figure 4-2 illustrates a simple transition between two states. The machine is in state B, having
come from state A. State A has been reset. The first row below the state latches performs the
"forward" transition, or setting of the next state. The '0' under the latch for state A detects that state
A has been reset The '1' under the latch for slate B detects that slate B has been set. The '1' under
the inverter for input 11 detects that the input condition has been met and the 'S' under the latch for
state C will set state C when the transition occurs. The second row performs the "reverse" transition,

10

J

mmmmmmm •' ■■■ "■"■■■■•■—n^™

I

I
ASSASSM

or the resetüng of the previous state. The T under the latch for state C detects that state c

ÜlJd r ^t Xlatdl f0r ^ B ^ ^ 8tate B when the ^^ f^tion completed. CompleUng the operations of both these vans constitutes a complete transition

has been
has been

I til I l
I mil l i
I A I I I B I C I
I 11121 I I
I III I I

i t t i i t t i
10—P-l —1—SI

i > t i i i i t
l-l-l-l-IR —P-ll,

Figure 4-2: A Simple Self-Timed Tranaiüon

Asynchronous transitions are different from self-timed transitions in that they do not sense that
£ ecessor stat^ have been «set. If gate delays are suffidently non-unifonn. Jl^LlZ^

^trol as'inT TT mTer W0Uld n01 fUnCti0n Pr0perly- FiBUre ^ show the -»• "OU« of control as in figure 4-5. implemented asynchronously.

(

C

I III I I
i inn i i
I A) I I B I C I
I 11121 I I
I III I I

I I * • I I t I
l-l-l-ll-P-l—si

I I t I I I t I
l-l-l-l-IR—P-ll

Figure 4-3: A Simple A syndironous Transition

Synchronous transitions are implemented the same as asynchronous transitions, with the excep-
tion that the state latches are replaced by docked flip-flops. This is illustrated in figure 4-4.

Ill I
III I
III I
III I
inn i

A I I I B I
-1-2-
III I

C I
Phl2

III I
III I

• • i i t t i i
-l-l-ll-P-1—SI
* i • i i i i i
-i-i-i-iR—p-n

- Phil
I
I

Figui'e4-4: A Simple Syndironous Transition

BdwSr^ ^T138'011 eXplainS ^ ASSASSm "W™?* °f «M the constructs described by
figS TLX^PnrSr fT ^ ** ^^ "^^ ^ose flow-graph is contained in
examlh. ^^ Code for ^ control^nit is in figure 2-1. The complete PPL program for this

Program R^s '^ ^ ^ ^^ ^^^ ^ ^^^ Contain Porti^ <* "ü, PPL program. Row segments are referred to from left to right in a given row. Row and cdumn numbers

11

—

■'—'-'"'•^v- ■ . .

IJMIHIIU

ASSASSIN

are as labeled in the figures.
Figure 4-6 illustrates the compilation of a move transition (from state A to state B). Row« 17

through 19 contain the state latches, input gates and temporary gates. T1 contains "12 and not 13."
T2 contains "14 or 15." T3 indicates that the JOIN transition from states B and C to state T is cur-
rently being taken. T4 indicates that the HOVE transition from state B to stete F is being taken.
Row 15 is the forward transition from state A to state B. It senses that state \ is active by the T in
cdumn 1. that "BIG" is false by the "0' in columns 2 and 3. and that state F ^ inactive by the •O* In
column 22. State B is made active by the 'S' in column 17 and the row load is the 'P' in co!unm 11.
The reverse transition in row 14 simply senses with the '1' in column 17 that state B is active and
resets state A with the 'R' in column 0.

Scale-of-two loops pose a particular problem. It is possible to get stuck in both states, with no
way to get out. Spale-of-two loops therefore require some sort of mutual exclusion on transitions to
avoid this problem. Figure 4-7 illustrates the compilation of a scale-of-two loop. Row 5 contains
the forward transition from state B to state F. Note the 'O's in columns 0 and 22 which detect the
predecessors to state B. The '+ ' in column 18 is used in generating the outputs associated with this
transition by driving T4 when the transition is in progress. The right segment on row 12 resets state
B after the forward transition to state F has been finished. Note the '1' in column 19 which senses
that input 18 has not yet become false. This gives the required mutual exclusion of input signals in a
scale-of-two loop. Row 4 contains the forward transition from state F to state B. The '0' in column
19 detects the false slate of input 18 and the other 'O's detect the inactivity of the possible predeces-
sors to state F. Row 4 contains the reverse transition associated with the transition from state F to
state D. The "O' in column 15 senses that input 17 is currently false.

Figure 4-8 illustrates the FORK transition from slate A to slates B and C. Row 13 contains the
forward FORK transition. It senses the state A is active, that state F is inactive and that input BIG is
true (the "l 's in columns 2 and 3). It also sets both states B and C. The reverse FORK transition is in
the left segment ot row 12. It detects that both'states B and C hpve been activated and resets state A.

Figure 4-9 shows the JOIN transition from states B and C to state F. Row 9 implements the
forward transition by sensing that the predecessor state (A) is inactive, states B and C are active,
inputs 14,15 and 16 are true, and by setting state F. The '+ ' in column 14 is used for generating the ■
outputs associated with the JOIN transition from state C. The reverse transition is implemented in
row 8 where the activation of state F is detected and states B and C are deactivated (reset).

Figure 4-10 shows the compilation of the input boolean expression BIG -11 and (12 or not 13). The
leftmost row segments on rows 20 and 21 (1+ -1-P1 and 1+ -P-01 respectively) compile the subexpres-
sion "12 or not 13." The '+ ' in column 3 generate the OR of these two rows into Tl. 12 is sensed by
the T in column 4 of row 20 and "not 13" is sensed by the '0' in column 5 of row 21. To sense "BIG",
the program must contain Ts in both columns 2 and 3. To sense "not BIG" it must contain 'O's in
both columns 2 and 3.

Figure 4-11 shows both conditional and unconditional output generation from states and tran-
sitions. Row 22 implements the unconditional outputs controlled by state A. The 'V in column 1
senses that state A is active. The '+ 's in columns 6 and 13 implement the "HOLD 01.02;"
statement, the 'S" in column 17 implements the "RESET 03" statement and the T?' in column 10
implements the "SET 04" statement. The 'S' is used to reset a LATCH2 PPL cell and the 'R* is used
to set it. Rows 24 and 25 implement the conditional outputs controlled by state B. Row 24 detects
the "14 or 15" condition arid HOLDs 05 and 02 and resets 04. Row 25 detects the "13" condition and
sets 03. The last row segment on row 20 (ll-P SI) implements the unconditional output (03)
controlled by the JOIN transition from states B and C to F. Row 26 implements the "If BIG then set
04" statement from the J0IN transition in state C.

(

(

12

C

mmmmmm ■»iiWHiinLiumuiuiiiK. mtmwmmmmK***mmmmwmmmmimmm -^""WUKHPIPPIiH

ASSASSIN

-I-I-I-I i-i I-I-I-I i-i |.|.|.|.| |-
- - - -101-101- - -101-101 101-
-I-I-I-»5I-I2I-|-I-I4I-I1I-I-I-I-I3I- - - - -I I-I j 1 ,_, ,...., ,.
-I-I-I-I I-I l-l-l-l I-I l.l.l.l.l I.

•l-ll-

•l-l-l

l-l-l
1 - I
l-l-l
- i

-11-
- « I
-l-l-l
- t «

-l-l-l
- I I

! I
A III

I I
111
I I

I I I

B-

0-

0-

~\

0-

IS

-I

■0-0

■I-

i -
l-ll-

i t
I+-P-
- i

l-l-l
- i

-R ll-l-l-l-

1 —p—I-
- - i - i -
1—Sl-I-I-I

■ I - I -
-—P +1-1

- i - i -
 ♦ P-R—* Sl-

-P-0I-I-U-P-1I-I-I-I-I-IP-R.1

- - I •
 R|.

I-I-I-I'
- - I •
I-I-I-I-
- - I .

- « - I l-l-l -
-1-PI-I-I+-I-PIP-+-1

I I - I I I I - - I

III I I I I I III
inn B iTiiinn c iTin
iii i i i i i iii
12131 121415161 13171
III I I I I I III

i i

--II
P---SI-
- - - i

I
IT
I
U

i i

i - i i

i - i i

i i
l-l-l-l-l

i - i i

l-l-l-l-l
i - i i

i - i i
I -.1 - l-l-l

i - i i

i - i «
-I-I-I-I«
I T I I
-l-l-l-
I - I I
— e-

i-i
i

i-i
i

I-I
• i
I-I

i - i i

• - i i

■p-0-

i-p-
i i

i

I-I
i

R

---0---P-

l-l-lfl

P-0-
i - -
p
i - -

i
IR-

i

i
-0

i
-S

-P-

-l-l

-l-l

-I-I

-I-I

-I-I

-I-I

-I-I

-I-I

-l-l

-I-I

i
r i

0i-i
i

I-I

0i-i
i

-i i
i

-si
i

-ii
i

-SI
I

-n
i

I-I

I-I
i

-SI
I

-II
I

l-l
r

-n
■Rl-I

i

Figure 4-6: Sample PPL Program

13

,^..»..^^^:,.^-..^...: ..a.. , „„„i „.-..J..^i^:^.^.. _. . ~..^^,.~ .^...-......^Mal^BaiMalkj«^^^.^.^...^,,^-,^^

■-^^'''••^^mmmmmmiiiimmm -"■IIWllli' ""••'*• mmmmm

ASSASSM
(

Column Number

"rri'i j 111112 2 2 2
0123456789«l23466789fl'12 3

Rl 19 I I I I I I I I I I I III ll> ■ !
Si I A IIITIIIII B ITIII1III C ITIII D ITjll E I F
Wl 18 I 111112131 121415161 13171 14 8

I I I I I I I I I I I I III
Nl 17 I 111!! I I I I I I I I I I I It
01 -i i i i i i i i i i i i t « i ««« «««••• ,
.1 IS l-ll-«-»— P s *I-I

, , , I I I I I I • I I I I I I I i I I t I < I
14 IR— P ll-l-l-l-l-l-l.

Figure 4-6: Compilntionof theUOVE TransiUon

Column Number

11111111112222
«123466789« 1234667B9«123

Rl 19 I I I I I I I I I I I III III I I
01 I A IIITIIIII B ITIIlim C ITIII D ITIII E I F I
Wi 18 I II I 112131 I2I4I6I6I 13171 14181 I

I I I I I I I I I I I I I I I III I I
Nl 17 I I I I I I I I I I I III III I I
01 i i i i i i i t i i i i t i i > i < < i <>' *
.1 12 IR -P-l— ll-l-IR—P-l II

i t i i i i i i t t i t i i > i i i
5 |0 p 1 1-* 0-SI

.tl-,,t..|lll~-:il-ii-il
4 I - I -1 -I - I - I ~ IB 0—P—*-S—£HB 1 I

.||.i||-.|ttl--Sli-|<-tt
3 |-|-|-|-|-|-|-|-|-|-|-!-l-l-l-l0—1-P Rl-I

Figure 4-7: Compilation of the Scale-of-Two Loop

Rl 19
01
Wl 18

Nl 17
01
.1 13

12

Column Number

11111111112222
012345678901234567890123

I I I I I I I I I I I
I A IIITIIIII B ITIIIIIII C
t 111112131 12(415161
I I I I I i I I I I I
I I I I I I I I I I I

i i i i i i i i i i t i > <

III III I I
ITIII D ITIII E I F I
13171 14181 I 1
III III I I
III III I I

i t i i i i t i t i

l-ll-l-l
i i i i

IR

 —S-
iiti
 p-l-

—p—s
I I I I t I I
 ll-l-IR

 01-1
i t i t i i t

—P-l II

Figure 4-6: Compilation of the FORK Transition

5 The Assassination of a Contnol Unit
This section illustrates the complete design of a non-trivial state-machine. The control-unit to be

desißned comes from the Ada-tc-Silicoii Project underway at the University of Utah. This project
has as one of its objectives the automatic transformation of Ada programs into hardware implemen-
tations using integrated circuits [5]. The Ada-to-Silicon project is using the Internet Protocol (see

14

-x^-aJHW----

liiiittiiiiiiiiiiiiiiim

, . . .-»_4,U» I ■■■

liililrtMMMllWil'i iT ir

ASSASSIN

Rl
01
Wl

I
Nl
01
. I

Column Number

«12 3 4 5 £789
19 I

IS I
I A

17 I

8 I

I«—-
i i i
-l-l-l

I I I I I
IIITIIIII
111112131
I I I t I
I I I I I

• i i l

i I I I I mimii
I2I4I5I6I
I I I I I
I I t I |

I I I mn
13171
I I I
I I I

1 1
7 8

I I
ITI
141
I I
I I

1 2 2
9 B I

2 2
2 3

• • i
l-l-

1 ; • • • « « i i « i . ,

I
II
ei

i
i

i t

E i r

i

« - - i
IR

i
-R-

—SI
i i

— II

Rl 21
01
Wl 20

I
Nl 19
01
.1 18

Figure 4-9: Compilation of the JOIN Transition

Column Number

« 1 2 3 4 5 6 7 8 9 i ! 1 3 J 5 6 7
l-l-l-U-P-ai-i-i-p.,,.,.,.,.,.^^

1 ••-l-l I-, -!-!__
|-|-|-|*-J.p,.,.|+_,.p|p_+_1|1_p__

- V' • • - i » , , - - ,
* . L ' ' i i i i i I A

1 1 2
8 9 0

-ll-l-l.

I I
I
I

17 I

IIITIIIII 8 ITIIIIIIl C ITIII D
112131 I2I4I5I6I 13171 I

I I I I
I I I I I

I I I I I
I I I I I

I I I
I I I

-l-l-l.
i - - •

I I
Tin E
4181

I I
I I

2 2 2
1 2 3

l-l-l

l-l-l

I !
I F I
I I
I I
I I

Figure 4-10: Compilation of Boolean Expressions -BIG

Column Number

« 1 2 3 4 5 6 7 8 9 i 1 5 I J JJ) 5 5 | ? | 32

I !

29 l-l

28 l-l

27 l-l

Rl 26 1 m I
01 wm

Wl
1
25 l-l

Nl 21 1 * 1
Ul . ,
Ml 22 1 - 1
81 CB

El 20 1 - 1 ■
Rl

19
-

18

17

-l-l- -| l-l-l-l l-l l-l-i-l-l l-l
- - - 01-101 101-101 101-
-I-I-5I-I2I-I-|-|4I-III-|-|-|.|3|.|
" -" " • 1 l-l I- - - -| |-
-l-l-l l-l |-|-|.| |.| |.|.,.,., ,.,
---•-, ,„, ,_
■,1-1 P—R II-I-l-l-l
-«•«-i- I-I
-l-l-l-ll —1 p__
-III»!!--!-,-,
-I-I-I4-P- + -1-J—S|-|„|_|.
-Il-llll-,.,
I"""" * P-R—♦ Sl-I-
1 ' I-I-I i---i-t--i--
-l-l*-l-PI-l-|*-l-Plp_+>lll.p.._s|.,.

«»«•-•« i i - - t i -
I I I I I I I I I I III

I A IJITülil B !I"»'iin c inn
1I1I2I3I I2I4ISI6I 13171

I I I I I I I I | | III
1 I I I I I I I I I |

i - - i -
 -Rl-I

-l-l-l-l-l-
i - - i - -

-I-

• - i -
I I

D ITII
1418
I I
I I

[<

1
I E
I
I
I

Figure 4-11: Compilation of Outputs

IT£ mraS I ^ Veh!de- The Intemet Pr0t0C01 haS "^ de^P^d into three communiceüng
hardware (and software) submodules [5]. Figure S-l illustrates this division. The protocol conai^

15

ASSISSM

of N mu _ m submodules. each of which receives transmitted data and assembles datagrams from a
single local area network. N INU.OUT submodules. each of which appropriately fragments and
transmits datagrams to a single local area network, and a single INM . SRV submodule that lateriaoss
the N IN«. OUT and N INH.IN submodules to one or more host compute™. The complete Ada oodp
describing the INJI.OUT submodule has been written and compiled and wilUi presented in .
forthcoming report.

.c:
JHKJK

lUglni
tm
(«A«)

<sSsä>

^Ä
INN OTT

UN U
nl

»tpam
bufftr

(MHJ

pttMur
Ubl.

(RAH)

UMOUT

Figure 5-1: Internet Protocol Hardware Submodules

The INM-OUT submodule of the Internet Protocol has been selected as the initial test case
Preliminary Ada code in the form of a complete task has been written and compiled. INM-OUT
consists of three separate tasks. Main, Read. Init_ Parameters and Translate. TOS_ Table. Of
these, the hardware architectural design has been completed for the Read. Init. Parameters task.
Read. Init. Parameters deals with the initialization parameters of INU.OUT and loads various
registers with data related to the transmission of datagrams through a local area network. Il-
lustrated in figure 5-3 is a block diagram of the hardware implementation of this task. Professor Al
Davis perfcned the mapping of the initial version of Ada code into a block diagram Several
modifications have been made since that time. The block marked "Read. Init. Pars -FSH" is the
control-unit derived from the Ada code for the Read. Init. Parametere task. Figure 5-2 contains
the Ada code for a section of Read. Init. Parameters. The complete code is found in Appendix .

Figure 5-4 contains the control flaw-graph for the Read. Init. Parameters task as extracted from
the A da program. It should be noted that this particular flow-graph does not use the FORK and Jom
transitions available in CUDL. Indeed. FORK and JOIN will probably not be used in implementing
tasking, but may be used for more fine grained parallelism based on data independency. Ada accept
statements are translated into_requt^t-ecknowledge handshakes with the appropriate module.
These are indicated by the name of the accept (GO or SRV) concatenated with ".REQ" and "ACK".
State RIPO is the initial state of the machine and sends initialization signals to several of the
datapath modules in the environment of Read. Init. Parameters. Of particular interest, the signal
INITNÜM.REC.LOD is held during this state. This signal indicates to the register holding the
initialization number to watch the associated three-wiro bus and assume its value at all times.
W hen this signal is dropped (in state RIPl). this register latches the value on the bus. The firat
accept statement ("accept G0(...) ") is begun with the transition from state RIPO to state RIPl

:■

16

 .—_

mmimimmum-mih urn mam „n [' i I !i [■tlilMMlW —« -i--.«"««-

ASSASSIN

*

I

kit in
los*

• ec«pt Co(-- Ct« OP Cod« fro« Holn (old of ho.ory fiddr...)
In I t.nu*. foraali bltli

do
>)

A1«0 ■••n* inlt.ol. roiponi« is ••tit.olci
for indo« in 1 .. inlt. nua.for■■!
loop

■ccttt Irv.roql — Proeosi naaorr Addraas
aarvor.coaaond.dotuai arv.coaaandl
raaponaa.«o. aarvar■ out oul.rasponso) ,

do
Raaorr.raquaat(-• put chunk oul to tha nmmory aodul«.

raauaal. trp«. foraal => load.addraas.
chunh, of. addrass. foraal => aarvar. coaaand. datua.
aetat.foraal > > dont. cara. ectat) i

and Srv.raqi
and]oopi

— Cat tha (individual in i 11 al itat ion parai>«tarB Icontainad In tha
— naxt • octata racaivad) froa tho Haaorr hodula.
fqr indax in 0 .. 7
loop

tlaaorr.raauaat (
raquaot.tj-pa.foraal B> raca I va. dat ua. oc t at .
chunk.of.addraaa.fsraal -> dont.cara. X. datua
aetat.foraal s> octat. raiistarIi

eaaa indax la
uhan 1 => Ina. aax.packat. lo
Mhan 2 B> Ina.aax. packet. hi
uhan S B> Ina. addraaa. lanith
uhan 4 B> In«, t iaa.out. lo
Mhan S B> Ina. t laa. out .hi
uhan 6 B> ack.trpa

tm octat.rasiatarl -- I bita
IB octat.ratiatar i — ■ bita
i« octat.ratiatar i — I bita
■ B oetot, rat utar i — 8 bita
<B octat.ratiatan — I bita

octat.ratiatari — 1 bit
uhan 7 B> local, nat. t ypo. o f. aor v i c«. t «bl a. rou. a i la

■ B octal.ratlator) -- I bita
uhan e B> nuabar. of. local, not. trpa«.of. aar vita

'B oelat. ratistar i -- I' bita
and caaal

and loop;

•• R«»d in t^po-of-aarvica tranalation tablo.

daclara
rou.nuaban intatar ranta 6 .. nuabar. of. loca 1. n«t. 1 >.pai. of aarvlcal
col.nuaban intatar rant« * •• locol,not. 1rpa.of.aarviea.rou. alaai

Indaxi

-- Outar loop nodi all roua of TOS tobla.

— Innar loop roads in sna rou of TOS table.

intotar ranta • .. nuabar.of. local.nal.trpaa.of aarvlea
« local, not. t cpo. of. aarvi ca. rou. a i ta
i B ti

bat in
rou.nuabar ■ = «i
loop

col. nuabar ■B 0i
laop

naaorp.raauast (
raauost. trp«. f'ir««l B> r«caiv«. dat;. .octal .
chunk.of. oddross. foraol => dont. cor a. X. datua .
aetat.foraal => loa. lablaf i nda« I) i

cel.nu«b«r IB col.nu«b«r + 1;
axil uhan eol.nuabar B locol. not. trps. of. aarvica. rou. a na I
Indax i B indax 4- 1 i
If index > «ax,tos.tsbla.ails thsn
rasponso IB bad.arv.coaaondl
roturn) -- Exit tha currant accept ataleaont.

en d i fI
end loop) -- End inner loop.

rew.nuabsr is rou.nuabar + li
exit uhan rou.nuabar B nuabar. of. l^pes. of. service;

end loopl -- End outer loop,
•ndl -- End declare block.

•"<' &" -- End of init proeeaaint.
and loop) — End of outer-eoat linfinit«) loop,

end Reed.Inlt.Paraaalerai

Figure 5-2: ADA Code for Rea<i_ Init- Parameters

Note that the oondition for the transition indudes, in addition to GO.REQ. INITNUM .REG.DON and
INITNUH.CTR.DON. The madiine cannot proceed until it is sure that the initialization number
register contains the correct value and the associated counter has been reset. In state RIPl, the
machine begins the second accept loop. W hen the SRV.REQ signal arrives, a transition is made to

17

ASSASSIN

INM-SRV MODULE

TYPE OF SERVICE RAM
<H UOQS BY I BJTS)

Figure 5-8: Block Diagram of Read_ Init_ Parameters r

13

,

ASSASSM

8
■>

RIPIg -IIRWBJIIPIS
^

«WTUJULI

2MITtUl.l

^

RIP1A

-> Hxo/ TO.cn..c —i.ni.e
?

iMifSSufenut«!

R!P2g
^

RIPA

7K '
-OD.REB

««.MX & imnoucwjw

TOS.ÄWJJr.EB -► HID/ ao,«3«j

-> HOU/ SUV.AiX 7

RIPSg
TDs.ioa.cm.ifC)

rißure 5-4: Control F] W-Graph for Rend. Init. P.ra.nete™

19

my!m^m^m^mm

-
'

ASSASSIN

state RIP2. where the counter is incremented (indicating that another byte of address is to be trans-
mitted to the memory module), and a request-acknowledge handshake is performed between
READ- INIT- PARS and the memory module. The signal MEM .SEND indicates to the memory
that it is to receive data. W hen the counter has been incremented (INITNUM .CTR.DON) and an
acknowledgement from the memory (M EM.ACK) have been received, a transition is made to state
RIP2. State RIP2 terminates the handshake with the 1NM_ SRV module by asserting the signal
SRV.A CK. Once both SRV.REQ and H EU .ACK have been lowered, the output of the comparator
between the initialization counter and register is examined. One of the two transitions from state
RIP2 is executed based on the value of INITNUM .CMP.EQ. If INITNUM .CM P.EQ is on. the in-
itialization loop is terminated. If it is off, the initialization loop is continued.

The memory module now has the complete address of the parameter block which needs to be
transmitted to INU-OUT. State RIP3 begins an interaction between the memory module and
Read_ Init_ Parameters that loads a set of registers appropriately. The handshake with the
memory module is begun by holding HEM .REQ. At the same time, the register counter (which was
initialized to 7} is incremented (and is now 0). W hen an .acknowledgement is received from the
memory (M EM .A CK), and the register counter is finished counting up by one, a transition is made to
state RIP4 where the signal REG.DECODE.ENA signals the appropriate latch to gate in the value
from the memory bus. MEM .REQ is left on here so that the valid data on the memory bus does not
disappear before it can be latched. W hen the appropriate register signals that it has the data loaded
(REG.ACK), a transition is made to state RIP5. W hen the memory acknowledges the termination of
a transmission cycle (not HEM.ACK), a comparator with the register counter is made to see if all
required registers have been loaded (REG.CTR.EQ7). If not, the loop is repeated, incrementing the
register counter each time. If so, a transition is made to state RIP6 and the processing of the Type-
of-Servioe (TOS) table is performed. , • ; , .

The type-of-service table is to be a linear array of registers (or ram cells), indexed by row and
cduinn. Initially this indexing was done via a multiplication (in the Ada code). It was replaced with
a doubly nested loop to make the hardware implementation easier' and more straightforward. In
state RIP6, the type-of-service column counter and type-of-service address counter are incremen-
ted. They were initialized to their maximum value in state RIPO. At the same time, a handshake
with the memory module is begun (by raising MEM .REQ). When the memory has placed the data on
the line and replied by using MEM.ACK. and when the two counters, TOS.COL.CTR and
TOS.ADR.CTR have been incremented, a transition is made to state RIP7. Here the TOS table is
signalled to load the value from the memory bus (TOS.REG.LOD). M EM .REQ is held high so that
the data on the memory bus remains valid. W hen the data is in the TOS table, TOS.REG.DON is
asserted and the next state becomes RIP8. This state terminates the handshake with the memory
module. W hen the acknowledgement from the memory arrives, if all columns in the current TOS
table entry have been processed, a transition is mad- to state RIP9 to proceed to the next TOS table
entry. If more columns in the entry need to be proce^sd, the TOS.COL.CMP.EQ signal will be false
and the transition from state RIP8 to state RIP6 will be taken.

In state RIP9. the column counter (TOS.COL.CTR) is cleared and the row counter
(TOS.ROW .CTR) is incremented. W hen these two operations are complete, the next state becomes
RIPA where a check is performed to see of the entire TOS table has been loaded. If it has not,
TOS.ROW.CMP.EQ will be false and the a transition occurs from state RIPA to state RIP6. If
TOS.ROW .CMP.EQ is true, the output G0.ACK is asserted, terminating the "Accept GO (...)"
statement. When GO.REQ is lowered, the next state becomes RIPO to begin over again when
necessary. Figure 5-5 contains the CUDL code for the Read_ Init_ Parameters state machine.

The CUDL code in figure 5-5 was run through ASSASSIN. The code was simulated to verify that it
matched the flow-graph; the associated PPL program was then generated through compilation of the
CUDL code. Figure 5-6 contains a plot of the PPL program for the Read- Init- Parameters control.

20

ASSASSIN 1

ControrUnit RaadlnltParni

Sttttfltchin« RIP:

StartStata RIP8:
■ovaen C0_Raq and (In I tNu«_RECJ)ON and ZnltNua CTR DON) «B BIPI.
hold InltNu«_CTR_CLR, InltNimjEC LoS; REC CTR nnx7 '

^hold TOS.Cot.CTRJIflx; TOSJouIcTRlCLi; TOÖMÄIIBX,

slat« RIPIt
■ovaen SRVJtaq to RIPIB«

and |

•tata RIPlRi
■ovaon nEHJclt and InltNun CTRJJON to RIP2f
hcld»üE!!-R,('' "EH-Sand, InltNui»_CTR INC;
aat CO.Raaponaa;

and;

ctata RIP2i
■ovaon not SRVJU«, and (not HEHJck and InitNum CflP ED) to RIP3.

ho'rrSR^Bc" 'nd <n0, nEn-*e* •nd n0t In,tNu"-"P-"> to RlfJl
and)

ctata RIP3:
■ovaon ninjiek and Rag.CTR DON to RIP4:
hold HEII.Raq, Rag.CTR INC,

and;

ctata RIP*:
■ovaon Rog_HCr to RIpS;
hold HEn.Roq, Rag.Dacoda ENR;

and;

ctata RIPSi
■ovaon i<ag_CTR_E07 and not flEBJlcIt to RIP6;
■ovaon not Rog_CTR_ED7 and not flEft Rek to RIPS-

and; •

ctata RIP6>

Il!^!0J!irIIE2-BcM!ed,(TOS-Co,-CTR-DON •nd TDS_Pdr.CTR_DDN) to RIP78 hold HEH.Raq, T0S_Col_CTR_INC, TDS_fldr_CTR INC;
and; •• — F

atata RIP7i
■ovaon T0S_Rag_0DN to RIP8;
hold TDS_Rag_LDD, HEH.Raq;

and;

ctata RIPS:
■ovaon not HEn.Rck and TDS_Col CIIP ED to RIP9t
■ovaon not flEnjIck and not TDS_Col_CHPJ-D to RIP6;

ctata RIP9i
■ovaon T0S_Col_CTR_00N and T0S_Rou CTR DDN to RIPRs
hold TDS_Col.CTR.nflX, TDS_Ro«_CTR INC, '

and; '

ctata RIPfi:
■ovaon not TDS.Rou.CHP ED to RIP6;
■ovaon not CO.Raq to RIP8;
If TOS.RoH_CnP_£0 than hold CO_flclc;

and;
•nd;

•nd.

figure 5-6: C U D L C ode for Read. Init- Parameteir C ontrol

Figure 5-7 shows the composite layout.
The compilation of the control unit took approximately 2 minutes of DEC-System 20 CPU time

The resulting circuit is 2028 microns by 1050 microns (39 PPL columns by 30 PPL rows using 6-
micron geometry). The datapath related to the Read. Init. Parameters task cannot be layed out
until the relationship of some of the registers, which represent global variables (with respect to

21

J

^^^«^■■■■■■p

ASSASSIN

• -
I-

IAI-
I-

III-
I-

i '
I l<
IAI
I 11
III
I I'

i - i ■
I I--I I'
IAI-IAI
I l-l I-
Ill-Ill-
I l-l I-

i "
I I-
IAI-
I I-
ILI-
I I-

s -
I I-
IAI-
I I-

» -
I I-
IAI-
I I-
III-
I I-

t -
I I-
IAI-
I I-
III-
I I-

l ■
I I'
IAI-
I I'

I-
!•

I •

I l>
IAI-
I I-
III-
I I-

• - • - i - l - l - ■
I l-l l-l l-l l-l l-l-
IAI-IAI-IAI-IAI-IAI- ■
I l-l l-l l-l l-l l-l-
III-lll-III-III-m- ■
I l-l l-l l-l l-l |-|.

' i
l-l

• i
l-l

-l - t >
-I l-l !■
-IAI-IAI-
-I l-l I"
-Ill-Ill-
-I l-l I-

I -
I I-
IAI-
I I-
m-
i i-

i-i-

i-i-

i-i-

i-

i-

i-i i-i i-i-i-i I-I i-i-i-i-i -I-I i-i-i-i-i-i-i-i- I-I-I-I i-

I-I-I-I I-I I-I I-I I-I I-I -i-i-i-i-i-i-i*-p-f-ii- i-i I-I

-i-i-i-i-i-i i-i-i-i-i-i I-I -I l-l*---*-l-P- I- ,|_|, I-

l-l l-l '-I l-l l-l-l-l l-l — P- ■+l -I l-l l-l I-

l-l I-I-I-I-I-I •-♦-1
• - i

I+-1-
- t

•P f I l-l-l-l

I l-l*—♦- •R-l«
- i

■ P ■--♦l-l

14-1-
I

l*-P-*-ll
:

•♦IP

14 L

I I
IAIA
I I
III
i I

: t

—S
i

III I
IAIAI I
I I 14 LI4 LI
IIIII I I
III I I

I I I
IAIAI

I I
IAIAI

II
I

14 LI4 LI 14 LI4 L

I I
IAI
I I

III
I I

I III I III
Al IAIAI I IAIAI

14 LI I 14 LI4 LI I 14 L
I I II

I I
inn
I I I

-♦-1
- I

I
I
14 L
I
I

01
!

IR-
i

10- P-

-l-IR-P

0- S-

l-ll-

g.

i
R—

t
S
i
I

P-l

0-P

--P

0-P-0

I

I-

I

IR-

—S

0-0--

Rl-

i

IR-
i

10-

l-l

l-l

l-l-

-—S

IR-P

IR —

Rl-

l-l-

l-l-

-S-01

I

IR- —
s

10---

-l-l

l-IS

l-l

-IR-P

R-

-I

P-

1R-P —

—Sl-I I-

P- — -Rl

P-0-

l-l

l-l

l-l-

l-l-

—S

y- —«-■-_

—..p,.>

I-I

0i

10 -s-p I-I

10 p-0- si
-a—.

—p-

■S-0-

-I-

-I-

10

10

01-1 i-l-

-Sl

•Rl'

Figure 5-6: PPL Program for Read- Init- Parameters Control

i

■'»-^ w^"

■pr wiimn --^PSP^WPBPWII^™ "I""1111" Mwnmmiim m——.

'■

ASSASSIN

c Figure 5-7: Composite Layout (NJI OS) for Reod_ Init_ Parameters Control

-- - -^^t . * ** *■■ ■■- ~ ■ --

ASSASSIN

Read_ Init_ Parameters), witJi olher associated control and datapath elements has been established.

6. Conclusions
ASSASSIN demonstrates several Jignificant point i.

1. Control can be specified at an abstract level and then automatically and easily imple-
mented as an integrated rircuit module. It is possible to map control specified at even
higher levels of abstraction to something ASSASSIN understands, thereby enabling ua to
make progress toward a true silicon compiler. Sudi work is reported In [11].

2r Self-timed (or asynchronous) control-units with concurrency can be easily Implemen-
ted, ASSASSIN shows that the control for self-timed machines can be desiened with
relative ease. *

3. The successful use of Path-Programmable Logic in A SSA SSIN shows that PPL has great
value as a drcuit implementation technique, at least for this type of control-unit This
also shows that PPL is indeed amenable to the development of sophisticated CAP tods
that use it as the underlying drcuit implementation technique

4. The mapping of Ada's rich set of control constructs is very straightforward as il-
lustrated by the generation of the control for the Read_ Init_ Parameters task
ASSASSIN represents a step forward in the design of integrated drcuits by allowine
high level descriptions of integrated drcuit modules to be automatically compiled to a

7. Acknowledgements
I would like to acknowledge the help of Dr. Lee Holiaar without whbse help and encouragement

this work would not have been done. The work of Dr. Kent Smith on the development of PPL is
greatly appredated. Acknowledgements are also due to Dr. Elliott Organick, Dr. Alan Davis. Dr.
Gary Lindstrom, and Dr. Alan Hayes for work on development of the example of the transfonnation
of A da to a hardware module.

24

! '_ BWg*

kl

■ "'••'*' mgmmmm ~

ASSASSIN

L The Syntax for ASSASSIN

low in^ are to be used in underatandin« this descripüon: ' ^ ^e- 1M fo1

<> - a non-terminal eymbol
- 0 or more repetitions
- is defined as
- OR

language terminals are indicated by uppercase

<control-unit>

<idBnti f ier>

<id-tail>

<input-descriptor> j

<input-reductlon-list>:

<reductlon-stateitient>

<condition>

<term>

<primarü>

<8tatö-naiiie>

<8tatenient-l i8t>

<statement>

'.= CONTROLUNIT identifiers :
|<input-de8criptor>j <8in-list> END .

!= <letter> <id-tai l>

= 5i,!ll,r^ ^'^^'^ ' <diBit> <id-tail> <lBtter> I <digit>

= INPUTS: <input-reduction-l ist>

<reduction-8tatetnent>
<input-reduction-li8t> I

<reduction-statenient>

<identifier> := <conditton> ;

<tBrni> OR <condition> I <terin>

<primary> I <primary> AND <term>

<identifier> I . (<condi tion» I
NOT <priffiary> I TRUE 1 FALSE

: = <8in-l ist>

<sni-descriptur>

<sin-type>

<state-li8t>

<8tate-descriptor>

<8tate-naine-li8t> j =

<siti-de8criptor> I
<8in-de6criptor> <8ni-ii8t>

)■ <8ffl-type> STATEHACHINE <identifier> :
<state-li8t> END ;

= SELFTiriED I ASYNCHRONOUS I SYNCHRONOUS

: = <state-descriptor> I
.<8tate-de8criptor> <8tate-li8t>

STARTSTATE <8tate-name> :
w^r. <8tate'nent-li8t> END ; I
STATE <8tate-name> :

<8tatenient-i ist> END ;

<8tate-name> , <etate-n3me-li8t>
<8tate-nanie>

J= <idBntifier>

! =

t =

<8tatemBnt> ; <8tatBment-li8t>
<statement>

<tran8i tion-8tatBni8nt> I
<action-statBniBnt>

—

|MM| ■™w™-———- ■MoippMMmiinm imipiuuMiw

ASSASSIN

<tran8ition-8tateinent>:= <trari85tlon-op> <tran8ition>

<tran8ltion-op> ti MOVEON I FORKON I
JOINS <Btate-name-li8t> ON

<tran8i tlon>

<action-8tatB(iient-l i 6t>

<action-8tat8rnent> ;

<act ion-op>

<output-li8t> ;

<output-name> :

<i f-act ion-stateinent> :

:= <condition> TO <8tatB-nanie-l i8t> j !
<condttlon> TO <8tate-nanie-l i8t>

OOING <action-statement-Ii8t> ;

= <action-8tatement> I
BEGIN i<action-8tatenient> ;} ENO

= <action-op> <output-l i8t> I
<i f-action-8tateinent>

= HOLO I SET I RESET

= <output-naniB> , <output-l i8t> I
<output-nain8>

= <identifiBr>

IF <condition> THEN
<action-8tateinBnt-l i6t>;

E Ada Code for the Read„ ML. Parameters Task of the INM_ OUT Submodule
separate (Ink.OutJIoclula)

task body R«ad_Inlt_Par«a*t«rs la

— Rccascad global*:

~ number_of_local_nst_typat_of_«arvieai
— I oca I _ni l_typ«_o f _8ar v I ca_t ab I 8_POH_« I za>
— toa.tablsi

— Local variable declaration:

oct*t_typ*
octet_type
oe t« t.bu f <er_ type

— The following variable la conaantad out. It appaarad only In the
— "high-level" ucad to read In tha TOS table. Saa below.
— nunb*r_of_toa_tabla_octatii Integer ranga 2 .. »ax_tos_tabla_aIza - 1;
oetat_raglit*ri octal..type;

bsgin
loop
accapt Go(

Init_nuM_lorBal> blt3|
ratponaa: out out reaponae)

do
response tm sent_olc; — Also haanc inlt.ek.

— Cat fron tha server all of tha addr.chunks needed to fore tha
— basa address in memory that holds tha Initialization paraaatars
— and sands thasa chunks to tha Haaory aodula.
for Index In 1 .. in i t_nu«i_f oraa I
loop
accapt Srv_raq(— Cat naxt address

~ chunk frea tha
— Server Moduli..

ssrvar.ceaaand.datuat arv.coaaandi
pasponsa_to_sarvsrt out eut.rsspensa)

do
naaory.raquatt(— Put chunk out to

— tha Haaory aodula.
raquast_typa_feraal => load_address,
chunk_ef_addrass_feraat s > sarvsr.coaaand.datua,
octat.feraal => dont_eara„eetat) |

and S.v_r»f);

^.^^ , -«»..u«**.»^,^.. „-

ASSASSM

•nd leopi

' ^w/H* e.'!;,"vl,*ual '"•<l«ll"tlon par.Mt.rt (eontainad

7;rB^.! ?st;,!.rsc"v,d) ,ro',h' n'-op"Bodui-
loop

In ihm

H««ory_r»quoat(

ehun|{_o<_«ddr«tt_lop»«) «> dont_eip«_X_d«tu»,
= > oct»t_r«gi«t«r) ; octot.foraal

cito indox is
M!l,n J ** '"■-»•«JWrttt.lo
«hon 2 ■> lnn_aiax_p«ck«t.hi
uhon 3 -> lnB_addr«tt longth
«hon 4 K> ln»_t l«»_oijt. lo
«hon 5 B> ln»_t !■• out ,hi
nhon 6 = > aclc.typa

i = octat.raglatar;
l" octot.raglatori
> * octat.ragiatari
i = oetat.raglstari
l« eetat_ragl«tar|
•■ octr:_raglatari

wh»., 7 «> local_naf_t«pa_of_aarvlco...table_roH_aiia

«h.n « -> nu.bar_of.(ocal.B.t.t„Pa._or_.
0.Cr1vVCf'

9"t'r'
tm octat_ragiatar| and cas«j

and loop)

— Raad In typa of aarvica translation tabla.

daclara
roH_nuBbor: intagar ranga

e«r n,.-h.-. 8 "• nu"b»p-of-l«>ca:_nat_typa8_of aarvicat col_nuabari Intagar ranga '

• .. lacal_nat_tgpa_o(_aarvlca_roM_alM}

Inda^j Intagar ranga
8 .. nuabir_of.Jocal_nat_typa8_o,f aarvica

a local_n8t_typi»_of_tarvica_roM_Bl»a
bagin

päu_nuabar IB 8;
loop

col_nuMbar IB 6;
loop

naaory_raquaat(
raquaat_typa_<or«al

'« •)

- Outar loop raada all roua ot TOS tabla.

— Innar loop raada In a rou of TOS tabla.

«> recalva_datua_octatt
chunlt_of_*ddra««_fop«al B> dont_cara_X datua.
octat.for»al .> toa.tabladndax)),

col_nuiiib«r ta col_nuabar + 1;
axit whan col_nuabar ■ loca l_nat_typa_of_8arvlca_roM_BUa|

indax ta Indax + lj
II Indax > ■ax_toi_tabla_flxa than

reaponaa ta bad.arv.coaaand;
r.'x.u,rnt — Exit tha currant accept etataaant.

•na Itj

•"d '««»P; ~ End Innar loop.

rou_nuabar : s roH_nuabar •»■ Ij
axit uhen roM_nuabar s nuabar_of tupas of aarvicat

••»" ,00P> — End outar loop.
•nd8 — End daeiara block.

•nd Co» — End of inlt procaaaing.

•n* leop» " End of outar-aoat (Inflnita)
.»_...-. — loop.

•nii Raad_Inl t_Paraaatar8j

27

•^ -»^

MUMM »' '' ■^mmmmmfmvw Hill, iininiiLiii, niiiKiiiiiijii.cnipppMp mmmmmmmmm

ASSASSM

References

1. T. H. Carter. "ASSASSIN: An Asserjbly. SpedficBtion and Analysis System for Speod-
Independent Control-Unit Design in Integrated Circuits Using PPL," Master's thesis,
Department of Computer Science, University of Utah, June 1982.

2. A. L. Davis and P. J. Drongcnrski, "Dataflow Computers: A Tutorial and Survey," Computer
Sdenoe Department Technical Report UUCS-ÖO-l09, University of Utah, Jul. 1980.

3. S. Hiyamizu et al., "Extremely High M obility of Two-Dimensional Electron Gas in Selec-
tively Doped GaAs/N-AIGaAs Heterojunction Structures Grown by MBE," Japanase Jotcmal,
of Applied Physics.Vol 20, No. 4. Apr. 1981. pp. L245-L24e.

4. L. A. Hollaar, "Direct Implementation of Asynchronous Control Units", Submitted to IEEE
Transactions on Computers, to be published December 1982

5. Organick. E-I.. and Lindstrom. G., "Mapping high-order language units into VLSI
structures," Proc. COUPCON B2, IEEE. Feb. 1962. pp. 15-18.

6. Postel, Jon: editor. "Internet Protocol: DARPA fntemet Program, protocol Specification."
Tech. report RFC 791. Information Sciences Institute, USC, Sept. 1981.

7. C. L. Seitz. System Timing, Addison-W esley, Reading MA, 1980, pp. 218-262..

8. J. H. Shelly, "Design of Speed-Independent Circuits." File226, UIDCL, July 1957.

9. H. E. Shrobe, "The Data Path Generator," Digest offerers: CompCon Spring 82. IEEE Com-
puter Society, 1982, pp. 340-344.

10. K. F. Smith; T. M. Carter; and C. E. Hunt, "Structured Logic Design of Integrated Circuit*
Using the Stored Logic Array," IEEE Transactwns en Electron Devices, Vol. ED-29, No.' 4,
April 1982, pp. 765-776.

11. P.A. Subrahmar.yam, "Automated Design of VLSI Architectures: Some Preliminary
Explorations", Draft Vsrsion

-

niiiiiiiiiilr

r T, ■*—-

iiiiftifrMiiteii^^fr wflim^iW^

in,, i nutn^mmmmmmi^^mmmuua himjimm^mmmmm "^ mmmmu. »'•"•"'wmimmmmmmm

;

Automated Design of VLSI Architectures:
Some Preliminaiy Explorations

■f

P.A.Subrahmanyani and S.Rajopadhye
• Department of C omputer Scdenoe

U niversity of U tah
. Salt Luke City, Utah 84112

Abstract

V e discuss the design of a program transformation system that is geared to aid in the
automated design of special purpose architectures (circuits), given a high level specification of a
problem. The synthesis of systolic implementations is outlined, and examples of syntactic forms
that aid in the description of such architectures (and algorithms tailored to them) are given.
Finally, we summarize the results of applying the methodology in synthesizing several classes
of systolic designs (proceeding from abstract, axiomatic specifications), and in the VLSI
implementation of an A da program fragment describing a part of the DoD Internet Protocol.

Research sponsored by Defense Advanced Research Projects Agency, US Department of
D efense, C ontract N o. M D A 903-61-C -0414

»

■ ■

^ - ■'"•"""—' * '^-w ——

Table of Contents 0

1. Introduction o
1.1. OTerall Approach j

2. Transformation Strttegies 2
2.1. Doclarative Constructs 2

2.1.1. Object Declaretioiui 2
3.1.2. Type DeclarationB 3
2.1.3. Renamin«. Use and W ilh Declaration«
2.1.4. Subprogram. Package and Task Declarationa g

2J2. Imperative Conslnict» . . «
2.2.1. Assignment Statements Onvohnng simple vanables) ^
2.2.2. Conditional Statements 6
2.2.3. Loop Statements 7
2.2.4. Procedure CaDs 7

2.3. Optimization 7
3. Systolic Arohitectures 8

3.1. Iteration B
3.2. Recuisfam - . K « .- 9
3.3. Syntactic Constructs forExpressm« Systohc Designs ^

3 31 Broadcasting <«
3.4. Regular Interconnection Sbuctures and Related Operations * J

3.4.1. Linear Interconnections JJ
3.4.2. Tree Interconnections jg

3.5. Input and Output of Data Streams 4
3.6. Distribution of Data. A Systolic Stack Implementation ^
3.7. Some Remaika jg

t; S^i^Splementation of a part of the Mtemet Protocol: A Case Study. 17

l^4ifc»4>,w MÜMIfilrfti II'IMMIMW» -

1. Introduction
The need for design methodologies for spedal purpose VLSI circuits that help combat the

spiralling complexity and cost of current day integrated circuit designs is by now well
established [15]. W e believe that it is also important that such methodologies enable a smooth
embedding of the resulting circuits into larger systems that consist of both software and
specialized hardware components e.g., on board control systems. In this context, we have been
exploring the us*- of high level languages as a medium for specifying the desired behavior of
special purpose systems, as well as paradigms for mapping such specifications into VLSI
architectures [26,25, 11]. We are currently developing a set of automated tools for
transforming axiomatic and/or high level language program specifications in Ada into
integrated software-hardware systems [12, 13]. In this paper we describe some of the details of
the design of our transformation system, and in particular the manner in which the language
constructs influence the architecture of the final machine. W e then indicate some ways in
which parallelism may be exploited, and how systolic designs may be synthesized. Syntactic
constructs suitable for describing the behavior of special purpose architectures are also
discussed. Finally, some preliminary results in applying the methodology to non-toy examples
are outlined: these include various classes of systolic designs and a hardware implementation of
an A da program fragment that describes a part of the Department of Defense Internet protocol.

1.1. Overall Approach
W e first summarize briefly our overall approach to the design of integrated software-

hardware systems.

The initial specifications are annotated Ada programs. The "annotations" [9, 8, 22] allow for
a statement of

1. Abstract axiomatic specifications of the behavior of a system, including stateroen'.
of temporal characteristics.

2. Performance requirements to be met by an acceptable implementation along
various dimensions of interest e.g., area, time, response time, throughput,
reliability etc.

3. Relevant characteristics of the external environment a system is designed to
operate in e.g., external timing constraints, relative function application
frequencies, etc.

Given either abstract specifications, or an Ada program, or a combination, the following
transformations may now be attempted:

—If the initial specifications are axiomatic, then these may be directly translated into
an implementation suitable for being cast into silicon [25].

—Alternatively, the abstract specifications may be transformed into an
implementation using primitives available in typical high level languages e.g.,
Ada [23].

—The high level language programs may be transformed into hardware
implementations [12].

In essence, the annotated Ada specifications may be transformed into any desired mixture of
software programs and special purpose hardware. The transformation into hardware is
attempted in two phases: the output of the first phase is a symbolic description of the hardware
implementation, which is then transformed into a set of masks suitable for actually fabricating
the circuit. The latter translation uses a program that automatically generates layouts for
asynchronous control units, given their symbolic description [3]; the layout of the data paths is
currently done interactively using existing relatively low level design aids (e.g., a
ComputerVision system).

The symbolic description of the hardware implementation is couched in an extended Ada
syntax, by using "macros" for describing specialized hardware structures and algorithms
tailored to them. Two major reasons for the use of such syntactic extensions are that (1) we
have found it dumsy to describe certain kinds of concurrency (both at a high and low level) if
we are constrained to use existing Ada program structures; (2) spedalized primitives are very

— __— ■pp-" nmmiPBMRMn IJUIII.IUIIKUI

6U I

often more appropriate for succinctly describing algorithms that are tailored to special
architectures.

We have found that the problem decomposition strategy and the configuration of target
structures chosen is very often critically influenced by the desired performance requirements
and the complexity measures associated with the target primitives available. This "strategy
guidance" may be done either by using automated complexity computation aids [17,24] or
interactively.

A typical transformation scenario can roughly be divided into two "phases": (1) an analysis
phase, wherein some global information relating to the program/specification is gathered; and
(2) a synthesis phase wherein the implementation is built up. The analysis phase typically
requires an examination of the entire program; this is usually done by traversing the parse tree.
The synthesis phase is typically incremental in nature, and involves the use of the information
gathered in the analysis phase and (optionally) further information of a more specific nature
(i.e., not computed in the analysis phase) which may involve non-local analysis.

In essence, therefore, there is ^ common set of global properties needed for guiding the
transformations which is profitably gathered in what we henceforth refer to as the (global)
"analysis" phase, and a set of more specific properties that are better computed if and when
needed. This separation into two phases, albeit somewhat nebulous, allows for

— Conceptual darity
—Improved efficiency (because global traversals tend to be comparatively expensive)

—Added flexibility in "global" decision making, since one is not forced to make an
implementation decision too prematurely.

The remainder of this paper is organized as follows. In the next section we discuss the
transformation of specificilasses of syntactic constructs in Ada into hardware structures. In
section 3, we focus on a few of the strategies useful that enable us to exploit parallelism, and
then delineate the development of systolic designs (proceeding from either abstract
spedfications or from Ada programs). W e describe some examples of syntactic constructs that
aid in the sucdnct symbolic description of systolic designs, and in the transformation process. In
appendix 1, we summarize the results of applying the methodology in the transformation of a
fragment of an Ada program spedfying the Department of Defense Internet Protocd [16] into a
hardware implementation.

,

2. Transformation Strategies
W e outline here a set of transformation strategies that we have developed for some of the

commonly used syntactic constructs in Ada [1]. These can be broadly dassified into either a
"direct" (in si*u) transformation of the language construct, or an "indirect" one, involving some
optimization and flow analysis. The latter can be thought of as a set of source-to-source i.e.,
Ada-to-Ada transformations that account for the desired optimizations, followed by "direct"
transformation. For the examples discussed in this paper, the target hardware model assumed
is an asynchronous one [2] wherein state transitions controlled by request-edcnowledge
protocds that are implidtly embedded in the underlying model.

To fadlitate exposition, we consider the Ada r»nstructs in order of increasing complexity so
that we can use the examples for, say, an assignment statement, in an if statement. W e split
the basic constructs into two dasses. The dedarative constructs serve to determine the
oolledion of registers, the storage elements and the data paths between them. W e refer to this
as the "environment" part of the chip. The statements in the body of the program determine the
(ensemble of) state machine(s) that constitute the "control" part of the chip. It is to be noted
that this distinction is not very rigid, since, in gereral, the environment part of the drcuit is
affeded by the statements and other constructs p esent in the procedural part of the program,
and vice-versa.

The statement part of a program may in turn be viewed as contributing to either intertask
oommunicaüün or intratask computation. W e envision an Ada task as a "standalone" drcuit
which is capable of communicating with other (co-)tasks. Since the A da language specification
does not detail the manner of this intertask communication, except for asserting that the

<

wmßf1 IPBWWWIPWPBPPWBiilPi^^^lliigi

C U l

I

»»

1

underlying machinery ensures the existence of an asynchronous protocol (where the selection of
ready tasks may at times be non-deterministic), ire in fact implement an explicit interfacing
machine -which handles communication urith other tasks. Its purpose includes maintaining
information about the availability of the task machine for calls from the "outside", its allocation
to different callers depending on any priority mechanism that might be desired, and
maintaining queues to allow for conflicts. A detailed discussion of various intertask
communication strategies and the trade-offs involved is contained in a companion report (see
also [12]).

2.1. Declarative Constructs

2.1.1. ObjectDeclaratioiiB
There are two kinds of object declarations in the Ada language — those which declare

identifiers to be of a prededared subtype, and those that declare them to be arrays. Of the
prededared subtypes, the most basic are the language-defined primitive subtypes, integer, real
and boolean. A dedaration of an identifier (or an identifier list) to be of any of these types
results in its implementation being selected from a library of available primitives. For integers
this presently consists of registers and RAM's. The registers used for integer implementation
are in turn made up of flip-flops varying in complexity from simple flip-flops to two-phase,
read-write flip-flops. The choice among these alternatives depends on the results of global
data-flow analysis. Reals are implemented as spedal floating point registers, along with an
encoding scheme and spedal arithmetic functions. Some booleans, depending on the result» of
global analysis may be found to be redundant in the drcuit. These may result in their being
implemented as combinational circuitry that computes their value at all instants. The booleans
that cannot be diminated in Miis manner are implemented as single flip-flops.

If the objed dedaration is an array dedaration, this is usually implemented as RAM 's of the
appropriate primitive type. The range of values that the variable can assume is used to compute
a default maximum size for the RAH which is further narrowed down, if possible, by using
global analysis.

For objed dedarations that declare identifiers to be of some non-primitive type, the
transformation system implements them as spedfied in the implementation of the type
declaration for the particular type.

2.1.2. Type Declarations
An Ada type dedaration defines a new dass of objects. This can either be a simple range

restridion on the predefined Ada types viz. integers and reals, an enumeration type, an array
type definition, an access type definition, a derived type definition or a private type definition.
For every type definition the transformation system maintains information about a default
implementation in a predetermined template. W hen transforming object declarations of this
type, this information is used to guide the particular implementation strategy adopted. The
stored information is incrementally refined when global analysis is performed on identifiers
declared to be of the particular type. -Currently this is spedfied interactively by the user

If the type dedaration is a restricted range on a predefined A da type, the limits of the range
are either constant or variable identifiers. The first case implies a dired upper limit on the size
of all identifiers that are dedared to be of the type, and this information is added to the
template implementation. If the limits of the range are identifiers, the results of global data-
flow analysis for the identifier are used to establish an upper bound on the range, and this
information is stored in the template.

Alternatively an Ada type dedaration may define arrays, enumerations, records and access
types. Currently the default array implementation consists of either RAM's or ROM's. The
ranges of the indexing variables determine the size of the RAM , and the range of the type of
individual objects in the declared array govern the word-size of the RAM . Since determination
of minimum storage at compile time is, in general, a computationally impossible task, we have
a default maximum on the size. The transformation system finalizes this dedsion after
interading with the user. Sometimes the user is able to spedfy the sizes more restridively than

ttm ... ^l^^MIWMiiM«i<i»irri(iiw«ri mam i TU lirMn imitaaätiitmälllt

^..«..^„...u.. . J"11 1""!11111- -ww^Hi. ..>,, Jum.mMmmimmmmm*mmH

the system ever could because of a more thorough understanding of the program. This aspect of
the transformation system is more critical than in conventional compilers, because of our
special target medium.

For enumeration types, the transformation system determines a minimal binary encoding for
the set of objects declared in a reasonably straightforward manner. All future references to
these enumerated constants are translated to a reference to one or more of these encodings. The
other type definitions are somewhat more complicated, but the underlying theme of
determining a default implementation for them is carried over, and a template is maintained to
hold this information.

2.1.3. Renaming. Use and With Declarations
Renaming (and equivalent use/with) declarations are used in Ada to provide new names for

identifiers, particularly if the identifier is declared in a different program unit. They do not
imply that a separate copy is maintained, but are simply a notational convenience. As far as the
chip architecture is concerned, they indicate the necessity of running a bus between two
modules to make the variable available to both. (It is also possible to have duplicate copies, and
ensure that consistency is maintained, but this approach is not currently used by the
transformation system.) In cases where the whole circuit occupies more than one chip, or when
the modules are physically placed far apart, renaming declarations enable some flexibility in
exactly which module contains thn actual instance of the object declared. (W e currently prefer
to rely more on use/with declarations, since too heavy a use of renaming declarations leads to
more human errors that are not so easy or impossible for a compiler to detect.)

2.1.4. Subprogram. Package &nd Task Declarations
These kinds of declarations have been grouped together because, in general, they are all

program units. Thus they indicate the presence of different computational modules. The scoping
rules of Ada determine how these modules access variables present in other modules, and
govern the generation of additional communication circuitry if necessary. If a subprogram
module has more than one potential calling module it becomes necessary to provide some
arbitration between possible conflicts. This is currently done interactively, where the user
either specifies the arbitration circuitry or (usually) tells the system to assume that no conflict
will occur.

2.2. Imperative Constructs

2,2.1. Assignment Statements (involving simple variables)
The general form of an assignment statement is

<Identifier> := <Expre88ion>

The "code" for the target machine is generated by a top-down traversal of the parse tree. The
transitions in the asynchronous target machine coincide with the order of node-visits in the
top-down traversal of the parse tree. W e illustrate the method with the familiar example as
shown below. Consider the simple assignment statement

a := b*2-4*a*c;

with the abstract parse tree as shown below (Figure 2-1).

The root of this tree is mapped into a state, DoAssignment, which sends requests to
subordinate states which perform the oomputations required. W hen it receives acknowledge
signals from all such secondary states it causes the result to be "load"ed into the LHS of the
statement Here the code for "computing" the LHS is trivial since the LHS of the statement is a

JSmmmmmmMK ^■jWUPWipill^

f

"

9 0T

: =
/ \

/ \
a

/ \
/ \

« *
/ \ / \

b 2 4 »
/ \

a c

Figure 2-1: A bstrad parse tree

"ComputeLeflArgumenl" and the C«^^«^« ^uest/acknowledge «IgMj P™1^1'^

task body StateDoAssignrnent is

begin

^^ISäSäT-^"^' StateCompute
end ForkToComponents;

end StateDoAssignrnent;

follows.

task body StateFinishA ssignment is

begin
accept D ojoinsQ do _ ftA ioin(on(Acknow!edge).LastOfLeftArg1

J LastOfRightArg):
endDojoins;
hold(RegA.load);

end StateFinishA ssignment;

C„Un^ with the jb», ».mpU ^„X^'ÄSÖS^'f^Ä
implementation shown in Figure Z^- .?<?*„• uie both operands of the »l*««1^

—

^

mm

mmmiw«uinmm, .n . um\t m.l mmmmmmmmm ■ ■»■miiiiiupuii. J.IU ,j!,,ni.,i.iw.uüwj(ui|jj,ji J .HJ.. .11. I>«II ■ miiiiiuiiiiiiiuii imu

.

„t.U-m.chlne I. .1» £^£ "SS^i.^SAZ. HdS,«, b «m.ot. .nd It m««
STÄÄJÄÄ^S^T.^ ThU.. d^e .„ th. W ««»

1

Do Asilgnmnt
Do Asjlyi^ent

»tq f«

UT2

Ktq '«•e

Rtq to
Astlgratnt

HulUb
I AcU AcU

•IShlft b
Uhlft •

SMfU

rser
HutU

Sub 1

M« TMTI'e) Aeks

I »wtertb

-1
End Astlgnatnt

__—J ,
Itnd tettl—>. [

WUVl WLDCTTAtlW

Optlalt*« Kullutlon

Figure 2-2: Two implementations of a:= b»2-4*a*c;

hardware. Multiplication/dmsion ^ P^e ^n^p^enTed directly as implemented as shifte. Boolean operations «n be ea^yi^ beoauge .t

combinational circuits. E^°nfntiat,°n:,hh7r^a;e An alternative strategy for

regularity of usage is required in this context.

2. Common-Subexpression Identification: ^«^ "SS^ÄlÄ?5SJ

rS^uS JSr ofs^e «^
souSTo^corporate the results of the data flow analysis.

3. Temporery Storage Determination: This e.UUs «^ -lysü, of ^e-qu-ment.
for Coring intermediate results Data ^ an?^ £%L^ is £%& in

opUmizatlon of ^Vf^.^^^SJS^^^^^^Mmlx}im

indicating if registers (or ^"^«?i^^Sth«itano a priori upper bound
rSSA'^^ASr^^ -Äd to hold only
certain specific data types.

(

Iteu ^»-■.,^.

,.,.„.,..,.„„,...,. ,. „-....,,,,,,-„,,„„,, ■—«"—■ ^ ^ I NJ.I.UIMIWBm

*_ V .

6

2.2J2. Conditional Statements
The general form of conditional statements is as follows.

<ConditionalStatement> := Mf <Conditiun> 'then' <Stateinent>
[•else* <Statement>l

The madiine that performs an if statement's function consists of a state (or a set of states) to
evaluate the <Condition> part. This state returns a boolean value, depending on which the
machine makes a transition to one of two states that are the start states for the two
<Statement> 's. If there is no else clause, one of the brandies makes a transition directly to the
statement following the if statement. This is shown in the figure below (Figure 2-3).

Figure 2-3: Skeletal state machine for an if statement

In addition to guiding the transformation of assignment statements, inferences from global
analysis as are used to determine the presence of redundant boolean variables in the source
program. Such variables are then replaced by just the output line from some combinational
circuitry.

2.2.3. Loop Statements
Ada provides for both simple, unconditional loops as well as while, for. and until loops. A

construct of the form

'loop' <Sequence0fStatenient8> ;

is implemented as the set of states that execute the <SequenceOfStatements>, followed by a
direct transition to the first state in the <SequenceOfStatements>. Any "exit" statements
inside the <SequenceO fStatements> translate to transitions to the state immediately following
the loop.

W e indicate in the next section how such constructs may be used for the synthesis of systolic
chips.

For while-loops of the form

'while' <Conditlon> 'loop' <Sequence0fStatenient8> ;

the transformation is similar, with the exception that the states for
< SequenceO fStatements> are preceded by states similar to those for a conditional statement
(without an else clause), and the last state in < SequenceOfStatements> is followed by an
unoondi tional transition back to the states for evaluating the condition.

For constructs wherein the loop consists only of a select statement, (many task bodies fall
Into this category,) the loop can be replaced by a single state where the madiine waits until it
receives a signal from any of the modules that call the corresponding accept statements. It then

- - —— - infiiiiift

«■Ti1«"! '" ■ ■' "™~<mmmmm wmmmm

i

makes a transition to the appropriate set of states, peiforms the required oomputaüon. and
returns to the "wait" state.

22.4. PiDcedure Calls ..
Procedure calls are directly implemented using Request/Acknowledge communication

between the caller and the state machine that implements the procedure. The state maciüne
first loads the parameters of the procedure on the bus/lines to the called machine, and men
issues a request to it. Alternatively, a "lazy evaluation" kind of scheme may be used, where tne
parameters are evaluated by the caller only when needed by the called module (in response to a
demand from it.) After the caller receives the acknowledge from the function module (whidi
implies that the output data line(s) from it are valid) it makes a transition to the next state.

Global analysis is used to obtain information such as the following:
1. Whether it is useful to implement the function "in line". This saves some

communication overhead at the expense of increased silicon area. In effect such an
arrangement provides a private copy of the procedure to every caller. In VLSI we
have the added advantage of not being restricted to a universal scheme. Some
procedures can be implemented in-line while others may be centrally shared
modules. An even more general solution provides some callers (depending on
estimated/measurca frequency of use) with private copies of the function, while
others share a common unit.

2. Identification of globals accessed in the procedure body. This involves deciding on
appropriate communication protocols and routing considerations.

2.3. Opümizalion , ,
Optimizations of a design are possible at all of the levels in the design hierarchy:

-At the very lowest level, it is' possible to increase system performance by
redesigning individual transistor layouts (e.g. changing Width/Length ratios) to
increase speed etc

-At a somewhat higher level, performance improvements can be obtained by using
specialized circuits to achieve certain funcüons instead of using a standard cell set

-At the next level, symbolic version of layouts can be locally "manipulated" in order
to improve efficiency e.g.. this may involve swapping adjacent columns (or rows) of
PPLs etc.. while ensuring that logical function is not impaired.

-At the state machine level, performance improvement can affected by state
minimization, improved parallelism, eta

-Finally, the high level architecture of the implementation can be juggled in order to
improve performance, while maintaining consistency with the the abstract.
representation independent, sped fi cations of the problem

It is Important to note that these levels have rough analogs in the realm of standard
language translation/machine architecture: faster/more powerful instruction sets, peephole
optimization, flow analysis on intermediate compiler code, and algorithm improvement
Further, the overall improvement is typically greater the doser the optimizations are to the
initial itages of development of an implementation: it is therefore more advantageous to
attempt to design an appropriate architecture (/algorithm), rather than spend time optimmng
channel layouts.

3. SystoBc Architectures ,_ r _i «r
In this section we delineate a few transformations that enable the synthesis of some dasses of

systolic designs. For the sake of brevity, we deal here only with a few dasses of looping and
recursion constructs. The methods are applicable to a wider dass of starting points, and the
theoretical basis for the median!cal synthesis of such designs (among others) is elaborated upon
in [261. Asa consequence, we have here chosen to emphasize examples of syntadic conatructa
that are suitable for describing such algorithms and architedures. rather than the details of the

—

 _ .„.

T T1 " "" ' 1,111 ii ««^^m^fimmmimmmm mmnmmmmmmwmwmm^ ummmummmimmM mmmiiji

synthesis strategy itself.

The primary decompositions possible are one or more of sequential compositUm, paraUal
decomposition, and pipelining. W hich decomposition scheme is adopted typically depends upon
the performance criteria desired, a detailed analysis of which we omit here. For example,
pipelining improves throughput, while parallel processing improves both throughput and
response time over sequential solutions. Of course, the response time is very much dependent
upon the algorithm used (i.e., upon what the specific decomposition is, what the
subcomputations involved are, and how the partial results are combined), and to a lesser extent
upon the lower level circuit implementation strategies. In particular, we recall that as a
consequence of wire delays being the dominant factor in single chip implementations,
asynchronous Implementation strategies are preferable in order not to slow down the whole
system and to minimize skewing effects.

W e now discuss examples of syntactic macros that aid the representation of auch
decompesi tions.

3.1. Iteration
Consider the loop structure

for i in 1 .. N loop
x(i) := F(x(i))

end loop;

A possible sequential implementation of this loop structure is shown in Figure 3-1. This
implementation consists of a processing element (or cell) that computes the mnction F. When
the stream of values xj xn is input to the F-cell. the output is the stream F(xi) F(xn).

A parallel implementation is possible if the computation of F does not have any side effects
on the subsequent computations in the loop. Such an implementation can use N instances of the
same F-cell, input the vector of values <xi xn> in parallel, and output the vector of results
<F(xj)....,F(xn)> in parallel. The i-th instance of the F-cell thus inputs Xi and outputs F(xi).
This is illustrated in Figure 3-2.

W hen each computation through the loop results in the computation of a partial result that is
"assembled together" in the subsequent iterations, a pipelined implementation can be
generated.

T hus, if w e consider

for i in 1 .. N loop
x := F(x)

ond loop;

then a pipelined implementation using N instances of F-cells is shown in Figure 3-3.

A combination of one or more of these techniques can obviously be employed whenever
needed.

3.2. Recursion
Some classes of recursive functions (procedures) can also be mapped into systolic

implementations. It is of course possible to first apply standard recursion to iteration
transformations and then apply the techniques discussed here. It is however also possible to
avoid this intermediate step in several cases. As an example, the form shown below can be
directly transformed into either of the implementations shown in figure 3-4.

function natch (a, pi string) return boo laan im
begin

if a = nul I

ww

1^,11« J JM wuH.imawpn iiJMiUPi Nipil|MP.!«inuuiMU mmmm mmm - u ii,.iiinuiii|iii>n»w(iinipinpiu

i-

Fi«ure3-l: Sequential Implementaticm

• •

T

Figures-«: Parallel ImplemenUüon

-Rio • • -KZ}-* £E$üLT

Figured: PipelinedImplementaüon

then if p = null
then retiim(tru»)
else returat<•!••'

etoe if L«it(»)=L««tCp)
then l1.tch(nil_B«t_La.t(.),

Hi I_But_Lait(p));

end naieh; c

" W" mmmmmmmmmmmmmmmmmm mmmMmmm mmm^mmmmmimmmmmmmmfm

10

I

U

MATCH («.f)

Fotlavlnnuu.«»■ AICH.ulw.»JMfcuMAHO C.u

> Jdau

T-»
i

«Ate« ts.j») Itatcmd Plp«lla«ä InpiraimaUoo

BlgblknuibpuLSI»
Pij»lin. IsiplvMslW iuiB(Dtdtj Eli

ifw toil—Irti
' «Al!

Figure 3-4: Implementations generated for H atdi

advantages over the expanded/graphical forms in pattern matching and automated
transformation in that (1) there is a significant decrease in complexity in doing textual pattern
matching over doing graphical pattern matching (sublinear vs. quadratic or more); (2) the
absence of global :nler-depehdency of subcomputations in the iteration body is explicit and does
not have to bs infimd by global data flow analysis; (3) performance metrics can be easily
defined over such suoänct representaüons: this facilitates automated complexity computation,
althuugh a graphical representation (which is isomorphic) typically facilitates human
computation /comprehension.

3.3.1. Broadcasting
Broadcasting a signal to a set of ports associated w ith some collection of processing elements

is stated as

Broadcast (signal, Set_.uf.Torts)

For example, the Set- of- lorts may be a collection of named ports of an array of similar
processing elements.

Roughly speaking, port names of cells may be viewed as entries of tasks associated with
them. Thus, consider a M ULTIPLY- ADD- CELL that accepts has 3 inputs (ports) a, b, and c
and outpucs a single value a*b+ c We can describe a linear array of
MULTIPLY-ADD-CELL'S which is useful in several systolic algorithms for matrix
computations, as

f1ULTIPLY_ADD_üELLS: arrayd-.N) of MULTIPLY.ADD.CELL;

If we then want to state that x is broadcast to the N input ports named "a" of the array of
processing elements M ULTIPLY- ADD- CELLS, we can express this as

v'l -Q

^timmmm -■ —-'"■

liWWlW»H«' ^-^p—

11

Broadcast(x, nULTIPLY_ADD_CELLS.a)
I

N ote that this is identical to saying j

for i in 1..N loop CONNECT(x,nULTIPLY_ADD_CELLS(i).a) end loop;

This can be generalized in an obvious manner to more complicated cases, induding one
wherein the set of ports is computed dynamically.

3 4 Regular Interconnection Structures and Related Operations
W hen a set of processing slements have regular interconnections with their neighbors, it aids

comprehension and pattern matching if the "local" Mid "global" parts of the interconnections
are stated succinctly (as opposed to specifying the detailed interconnections).

W hile the components of an architecture is described by the set of interconnections between
the hardware modules it consists of. its frnctioning, or the computational details of an
aleorithm tailored to it involves stating how input data streams move through the system, get
operated upon, and ultimately emerge as output streams. W e now give examples of these in
some standard settings.

3.4.1. Linear Inteiconnectkin» „ •. J
A pipelined computation in linear interconnection of a set of cells can be expressed as

Pipe line (Array, Direction, BoundaryCondi tions, . A-JI—#.♦ r.i n
Set_of_Output_Port8, Set_of_Input_Port8_of_AdjacBnt_Cell)

where Direction is either left-to-right or rightH.o-left. the Boundary Conditions state what is
input at the left or right extreme port and what is to be done at the coiresponding output, and
the pair of sets Set_ of_ Output-Ports and sel-of-input-ports speafy the set of
complementary port names that detail which ports of adjacent cells are interconnected.

Asa specific example, w e have

Pipe line (MULT I PLY ADD_CELLS, LeftToRight, 8, „«,.,,, , P nÜLTIPLY_ADD_CELL(i).c, f1ULTIPLY_ADD_CELL(i+ l).a)

or

PioeIIne(MULTIPLY ADD CELLS, LeftToRight, 8, ripelinein l1ÜLTIPLY_ADD_CELL.c, Right(MULTIPLY_ADD_CELL).a'

where Right{M ULTIPLY- ADD- CELL) indicates the cell to the right of the current cell in the
linear array.

Sudi constructs can be generalized. As an example, we next consider treö interconnections.

3.4.2. Tree Interconnectiona , j _f
As an example, we give the skeletal spedfication of the operations and workings of a

"Didionary machine" that has the main computation performed by its leaf processors. Note
that the broadcasting process may itself be defined in terms cf a task (in A da).

t

task Dlet fonary

entry INSERT U> in KEY; n in RECORD)!
entry DELETE<ki in KEY);

n. i

12

entry SEARCH (k: in KEY, rt out RECORD);
entry UPDATE (k i in KEY, r< in RECORD),
entry nIN_RECORD(n out RECORD),

end,

task body Dictionary is

TREEi BinaryTr»e (DictlonanjSlz«, La«fProeatsor,
IntarnaiNoda0rocaaaor),

-- This pro.cataer traa iaplaaanta tha Dictionary
-- LaafProcaiaor and IntarnaIProeeator ara 2
-- types of procasaora ("taak typaa") that ara
— uaad in inatantiat Ing tha traa.

FunctionPort, KayPort, RacordPort« Por»,
-- FunctionPort raprasanta tha phyaical iinaa
-- that activata tha function invokad and tha
— Iinaa naadad for tha raquaat/acknouIadga protocol.
-- KayPort and RacordPort rapratant tha phyaical
— Iinaa aaaociatad with k and r.

— Tha association batHaan tha logical ports and phyaical porta
— la datailad balou. Tha ganaral fora of this conatruct la
— REPP^SENTCphyaleai-port-naaa, function-naaa, paraaatar-naaa)
— uhl states that tha *phya I eai-port-naaa* rapraaanta
— tha -paranatar-naaa* aaaociatad with 'function-naaa'.
— Thia tnablaa atataaant of tine aultipiaxing of tha Iinaa.

REPRE:EK:(KayPort, INSERT, k),

m
REi>RESENT(KayPort, tllN.RECDRD, k),

REPRESENT(RecordPort, INSERT, r),
REPRESENT(RacordTort, SEARCH, r),
REPRESENT(RacordPort, UPDATE, r),
REPRESENT(RacordPort, f1IN_REC0R0, r) ,

— Tha intarconnactiona to tha global porta ara daacrlbad balou

CONNECT(Root(TREE).ANSUER, RacordPort),
CONNECT(Root (TREE).KayPort, KayPort),
CONNECT(Root(TREE).Funct ionPort, FunctIonPort),

begin
loop

■elect
accept SEARCH (k i in KEY, rt out RECORD) do

Broadcast;*, r, La«fa(TREE).SEARCH) ,
— dalay 0 (log(Dic11onaryS I za))
— thia la dona by Making uaa
— of tha intarnal noda processors.
— Tha "finswer" fro« tha root la
— eonnactad to tha global port
— corresponding to r.

end SEARCH,

end select;
end loop,

end Diet ionary,

laalt type LaafiVecaaaer is

^ ■MÜMkMittiÜMMiHi im

17 I- I

13

entry INSERT (.. in KEY, r. in RECORD) ,
-„w SEBRCH(l(i in KEY)» entry SEBRCH

end L»««Proc«itor,
twk body Li««Proc«««or ia

This !• 'he iocal "■U-
L..«K.a. "V' CORDt " Thl. It th. r.cord In th.
L.««R«copd: RECORO, (!<f ppoc„tor(or • cod«

__ indicting that th.r« I« no
__ rocord «t thl« loaf.

begin
loop

■elect
.ceept SEnRCHU' Jn KEY) d^ 0EF INED (Uoc. .««cord)

i^FV'hVr.RN^ERCLoc.Rocord),
then

end SERRCH

end select;
end loop;

end L««fProc«««orj

toA type^rn.lNo^oc.«^ i. ^ ^^

entry DELETE (k: in KEY),

r , «^«n Bn.H«pFroiiRlghtSon: in RECORD,
*__ auqUER (fln«M«rFroiiiL«»tSon, Hn,M"V' '

entry BNSUER ^'„"„.^„„.r , out RECORO),

i end Int«rn«INod«Ppoco.«or,

taA body Intorn.lNod«Ppoc««.or is

begin
loop

'*•* .ecept SEBRCH (K. in KEY, •'.««t««0R0) do
Bro«dc««t<lc, Son«.SEARCH),

delay 1)

end SEBRCH

end select,
end loop,

end Diet lonary.

3 5. Input and Output of Dato Streanw utation is input and output is of great
The manner in which the data nee*;*'°r ° S*. Suodncte descriptions of such dal^

ixnporUnce in designing "«ft^S^ÄduS purpose in aiding simulaüons much the

R. arrayd.-N' of BITS,

^^^^a^auMii^AM-aBai^^ ■•, ^.^, m^iiitiim|.iWll

14

INPUT(fi),
INPUT<SKEU(B,1)),

— R»prtt«nt* an array of bits input in parallai
-- Rtpraaanti a rotated Havafront of bita
— Hhara fid) |s |npUt at tiaa i,

fl<2) ia input at tiaa 2, ...
— and so on.

Addiüonal timing statements may similarly be incorporated. These forms can be exoanded

irdTite^sUl^r ^ ^ '^ ^ 0Perati°n 0f «^-ithmsTai.^d^Äc

3.6. Distnbution of Data. A SystoUc Stack hnplementation

fvtn
• •

cetL **CUL
rvsH
ecu.

"1

 -^ *-J C^NTXcO

Figure 3-6: A Systolic Stadt ImplementaUon

1

task Systo i icStaek is

entry INSERTCx: in Eianant),
entry DELETE(xi out Elaaant),

" !J hi« - I ,VlC •nnot*t""'»" «P-cif« tha b.havlor
— of thaaa to ba that ascociatad H|th tha akatract data
-- typ. -Stacic". Ua o. i t thaaa h.r. for bravit«.

end Syatoi icStaek;

task body Syito IicStack ia

record

Callflrrayi arrayd..«) ofPuahCall
• • a

end;

— Local Intarconnactiona

Connact(PuahCaIi.SandLaft, Laft(PuahCa I i).INSERT),
— thla ia a Right To
— Laft data tranafar diraetion

ConnscUPuahCal I.CatFro.Laft. Laft(PuahCaii).DELETE) ,
— thla ia a Laft to Right

■titti^iäatfitfUtflilliiHiiif

91T

15

■

__ Boundary ConditIon»

.MiicjFBT c«l lBrr«y(N).INSERT) j
Conntct (INSERT, L,,,"r *„. nFLETE) i
Conn.ct(OELETE, C.Mflrr.« (N).DELETE) ;

,t(C.llBrr.u(l).C.tFro.L.1t, UNDEFINED),

begin
loop

'^ept INSERT (x, E«."«»» *%
CtIIflrray (N).INStKi "«»I

end INSERTj
■eceut DELETE <x: out) do
* P Ctllfirr.a(N).DELETE(><);

end DELETE,
end select,

end loop,

end Syttol lcSt»cK,

^ ^en^INSERT'cx. la E....«»>,
enS DELETE <xi ontEl.-nt),
ent?S.ndL.ft<x. outE..-.nt),
«tSc«tL.«t(x: inEI.«.nt),

end,

task body PuihCill »

CurrtntEltMnti EleMntj

begin
accept INSERT<x. .^""^M (Curr.ntEl...nt)) I

._ to l«n noighbor

.. Both th.«o oporatlon. can ba

.- dona in 1 cycla «»'"S •
__ 2-pha.a clocltad «lip-Hop

Cui'ron tElaaant i =x,

end INSERT,

::"U. ..it ..pl.-antatlon. for th. oth.r port..

end Pu.hCal I,

.

,

c

r

il i ifftKiililiil

[

L I I

16

mathematical basis for supporting such automated synthesis may be found in [26]. The
discussion there also elaborates on how the performance criteria, cost metrics and technology
constraints affect the synthesis strategies.

4. Conclusions
W e have detailed in the preceding sections the structure of an automated transformation

system geared to aid in designing systems that consist of a mixture of software components and
special purpose (VLSI) hardware components. In particular, we have indicated the mapping of
various syntactic constructs in Ada into hardware structures, and some other high level
constructs into systolic implementations. It is intended that these transformation tools be
based on the theoretical framework developed in [20], and therefore produce designs that are
formally verifiable.

An additional contribution has been to delineate syntactic forms that aid succinct
descriptions of special purpose architectures and algorithms tailored to them. The design of
such constructs has been done to aid direct mapping into circuit layouts, and to reduce the
complexity of pattern matching involved in the transformation process. Such forms may be in
fact be viewed as "macros", since they may be elaborated using the existing set of Ada
primitives. Unfortunately, however, the resulting expansions are sometimes quite clumsy and
obfuscating; on the other hand, a potential use of these expamdons is in simulation of the
resisting hardware using commercially available compilers for Ada.

Finally, we have summarized some of the results of our preliminary empirical explorations in
using the transformation/synthesis methodology. The examples considered included various
dasses of systolic algorithms and the hardware implementation of an Ada program fragment
using "path programmable logic" [20. 14]. Our preliminary results have been quite
encouraging, and have served to emphasize the importance of performance characteristics In
determining the global synthesis strategy. It has been estimated that the trade-off in using the
latter methodology for low level VLSI design results in about 10-20% increase in chip area
required (when compared with custom layouts), but results in a drastic reduction in the design
time (from a few months to a few days) [20].

Acknowledgements. W e gratefully acknowledge the feedback received on various aspects of
this work from our colleagues in the "Ada-to-Silicon project", particularly Elliott Organick,
Tony Carter, Al Davis, Alan Hayes and Gary Lindstrom. Special thanks go to
S.Purushothaman for porting the transformation system to run on the Vax.

 ,— ==£.

PWP".1! 1

17

Appendix

1 Haidware Implementation of a pail of the Internet ProtocoL A Ca^e Study
In this appendix we summarize the results of applying the methodology detailed aW m the

Ira^fomiation of ä fragment of an Ada program specifying the Department fj**£*****
ProtocS[16] into a hardware implementation. The Internet Protocol (henceforth referred to as
IpTSTcimmunication protocol d'esigned to enable packets to bg^^^^^Ä
The function of the particular module that we consider here (called ReatL^ ^/■»=««* »■
to read in the initialization parameters from the Memory U^t' a^ t° ^H"
acknowledgement to the caller when it is done. The P^^^^^V/JiWluv fn^ «i of
general procedure that achieves this while admitting a great deal of flexibility in the sizes of
various parameters.

Generation of the Circuit for Read- Init_ Parameters
The Ada program shown above is transformed using the methodology outlined earlier. For

the most part, it corresponds to a direct application of the strategies outlined ,n 2. Some of the
salient features resulting from the optimizaüons are described below.

The case statement, which constitutes the major portion of *h\<SequenceOßtet™ents>
nart of the first loop is very highly specialized in that it simply checks the index vanable of the
CTop anS de^nding on its value, chooses a variable that is loaded fro™ V?^/n-fhv
(St_ roister). Asa result this is implemented by using a multiplexor which is controlled by
the loop variable.

Since the variable "number. of_ tos_ table, octets" is the product of t*° ™a"«
"l«xal net type. of_ service. row_ size" and "number, of. local, net types, of. service
and is'n^e; used except in a final escape clause in the second loop, we use two nested loops and
do away with the multiplication altogether.

The final target code is shown below. A symbolic description of the droiit obtained from this
by uring the Assassin program [3] and laying out the data ,.aths is also shown h«. Thtatam
of the circuit can be directly transformed into a set of masks for fabnoaüon. an instance of
which is also shown.

•^mmmmim i . ,.. JluilJUH.lDPi.

18

■cparatc (Ina.Ou t.llodu la . Ina_Out)

procedure R*ad_inIt.paraaattrt (r* it out out.raaponaa) is

procedure flaaory.r aquae t (
chunk _of_acldraaa_fopaa Is chunK_of _addra8t_typa;
do.wrIta.faraals boolaani
octat.foraalt out octat_typa)

renames ttaaory .Raqua« t;

octat.raglatan octet;

begin

— DoNnload tha 6 Individual Initialization paraaatara.

for i ndox in 1 .. 8
loop
Maaory.raquaat(

i aquait_typa_faraal => raca I va_datuB_octat,
ehunl(_of_addraa8_fcpBal => don» t_cara_X_datu»,
aet«t_for«al = > octat_pagiitar)|

case ndox is
whttn i => Ina.aax.packat (•) i= oc ta t_rag I a tar;
whon 2 => lne_aax_packat (1) t= octa tlragla tar;
when 3 => lnn_addraas_langth := oc ta t_rag latar;
when 4 => lnB_t I aa.out (•) t= octa tlrag la tar;
when 5 => lnB_t iaa.out (1) i= oct a t.rag la tar;
when 6 = > ack_typa := oc tatlrag I atar;
when 7 => loca l_nat_typo_of „aarvlca ,tabla_roH_a I xa

i=octat_ragiatar;
when 8 => nunbar_of _loca l_na t_typaa_of _aarv I ca

i= octat_roglatar;
andcaaa;

end loop i

nuabar_of_tof_tabla_octata i=
local_nat_typa_of.aarvica_tabla_rou_8lza »

nuabar_of_iocal_nat_typaa_of_aarvIca;

for Indux in 1 . . nu«bar_of_loa_tabla_octata
loop

ttaaory.raquaat (
raquaat.typa.foraal => raca I va_datua_octat,
chunk_of_addra88_forBal => don't_cara_X_datun,
octat_for»al => toa.tab la (Tndax));

end loopt

end Raad_lnlt.paraaatara;

Figure 4-1: Source Program for Read- Iiiit_ Parameters

. ■

mm

-BWW

19

is new
is new
is new
is new
is new
is new
is new
is new
is new
IS new
is new
IS new
IS new

RRfl (Hddr

CIP IncR*

with TrancforaatlonCanaries, NauBooleanj

procedure RIPTargat is

task RIPStart is
entry RaqRIP;

end RIPStart}

Unk body RIPStart is

package InatlaxPacKatLoH
package InaflaxPaelcatH I gh
package InaRddraaaLangth
package InaTlaaOutLoH
pp;kage InaTiaaOutHigh
package InaRcKTypa
package InnTOSTablaRouSIza
package NoOfLocNatTOS
package TOSSIzaCountarPraI iaRag
package TOSEntryCountar
package EntryDona
package TOSOona
package LooplOacodar
package TypaOfSarvicaTabla is new

package TOSRddraiaRagIatar is new

package ControtUnit is

task RIPStatal is
entry nova2|

end RIPStatali

taak RIPStata2 is
entry flovaS;

end RIPStata2;

task RIPStataS is
entry tloval;
entry llovai;

end RlPStataS)

task RIPStata« is
entry ttovaS)

end RIPS tat«4;

task RlPStataS is
entry HovaSi

end RlPStataS;

task RlPStataS is
entry Nova?;

end RlPStataS;

task RIPStata? is
entry llovaS;
entry flovaS;

end RIPStata?;

task RlPStataS is
entry dovaS;
entry tlovaSTRT;

end RlPStataS;

Raglatar(aiza = > 8)
Ragiitar(alza = > 8)
RagiatarCsiza - > 8)
Raglatar(aiza m > 8)
Raglatar(aiza = > 8)
Raglatar(aiza = > 8);
Raglatar(alza = > 8);
Raglatar(aiza = > 8)
Raglatar(aiza = > 8):
Raglatar(aiza - > 8)
EqCoaparator (a I za => 8);
EqConparator (aiza => 8);
EnDacodar (Inputs Iza «> 3);
aaaS iza = > 8,
UordSiza ■> 4>|
giatar(aiza -- > 8) ;

taak body RIPStatal is
begin

accept neva2() do
B<iva(on(naaoryRaquaat.ncl(), to (RIPS tataS2)) ;

end nova2;

c

■MPP^wmnppvn -m~* "" ■"" ' '■"i"1«

T2T

3i

20

I

I

hold (MtaRaq);
end PIPStat.lj

task body RIPSt«t«2 is
begin

accept Hove3 () do
• ov«(on(NIL>(to(RIPSt«t«3)) ;

end :1OV«3J
rat« t (lUaRaq) j
hold(LooplDocodar.Enabl«)

<snd RIPStata2|

task body RIPSt«ta3 is
begin
■elect

accept tloval () do
■ova(on(NOTCnaaoryRaquait.nck)) RND

NOTCDacodarCountar.Carry))),
toCRIPStatal));

end doval;

accept nova4 () do
■ ova(on(NOKnaaoryRaquait.RcIc) RND DacodarCountar. Carry),

to(RIPStatat))|
end hove*;
hold(TOSSIzaCountarPral laRaq.Inc)>

end RIPStata3|

Uak body RIPStata4 ia
begin

accept flovaS () do
liove(on(NlL) , to (R IPS t a taS)) |

end fl o v a S| • .
hold(TOSSIzaCountarPral laRaq.C Ir);
ho Id(TOSEntryCouvntar.Clr);
ho Id(TOSRddraasRayiatar.C Ir);

end RIPStata4)

task body RIPStataS ia
begin

accept «o 'BC () do
aovaContnaaaryRaquast.Rclc), to(RIPStata6)))

end HovaS)
ho Id (flaaRaq) ;

end RIPStataS;

task body RIPStataS ia
begin

accept nova7() do
■ ova(on<NIL), tc(R IPStata7))j

end flovc7;
rasat (RaaRaq) i
hold(TypaOfSarvlcaTab la.Urlta>

end RIPStataS;

taak body RIPStata7 ia
begin

eccept (lovtS () do
aava(on(NIL)> to(RIPStataS))|

end HovaS;
ho Id (TOSSIzaCountarPral i niR.q . I nc) ;
hold(TCSEntryCountar.Ine)|
hold(TOSflddraBaRaglatar.Inc);

end RIPStata7|

taak body RIPStataS ia
begin
■elect

accept HovaSO do
■ ova(on(N0T(T0S0ona)), to (RIPStataS))|

■ - .■.^^^->^.

r
mm mmv.mm mmmmm 1 ' Ull!MM«l.l.l|imi,JIIUJJ.IUllllim

o o u

21

end tlovoi?;
accept HoveSTRT () do

move(on (TOSDone) , to(RIPSt«rt)>;
end nov«STRT;

hold(TOSSizeCounterPrali«R«q.Clr)(
hold(TOSEntryCount*r.Inc)|

end RIPSt«t*8;

end Con t ro lUn i 11

begin — body of t*iK RIPStart

accept RoqRIP do
■ ova (on (InaSorvor.Raquait), to (R IPStataSl))|

end RaqRIP;
hold(TOSSizaCountarPraMaRag.Clr)|

end RIPStart;

begin Body of procadura RIPTargat, apacification of
in tarconnact ions

CONNECT (namoryRaquast.Output(8..7),
CONNECT (nanoryRaquaat.Output(8..7),
CONNECT (nanoryRaquaat.Outp'Jt (8..7),
CONNECT (nanoryRaquaat.Output(8..7),
CONNECT (flaaioryRaquaat.Output (8..7>,
CONNECT (nanoryRaquaat.Output(8..7),
CONNECT (nanoryRaquaat.Output(8..7),
CONNECT (nanoryRaquaat.Output(8..7),
CONNECT (nanoryRaquaat.Output(8.t7>,

Typa0fSarvicaTabla.Input(8..7))t
InnnaxPacl(atLoM.0ata(8..7));
InnnaxPaclcatHlgh.Data(8..7))(
InnflddraaaLangth.Data(8..7))(
InnTinaOutLoN.Data(8..7));
InnTins0utHjgh.0ata(8..7))|
InnRckTypa.Data(8..7))|
InnTOSTablaRoHSiza.Data(8..7))|
No0fLocNatT05.Data(8..7));

CONNECT (EntryDona.Inputl(8..7), InnTosTtfblaRouSiza.Data(8..7)>|
CONNECT (EntryDona.Input2(8..7)> TüSSizaCountarPralinRag.0ata(8..7))|

CONNECT (TOSDona. Inputl(e..7), NoOfLocNatTOS.Oata(8..7)>;
CONNECT (TOSDona. Inputl(8..7), TOSEntryCountar.Data(8..7))t

CONNECT (TypaOfSarvicaTabla.nddraaa(8..7), TOSRddrasaRagistar);

CONNECT

CONNECT
CONNECT
CONNECT
CONNECT
CONNECT
CONNECT
CONNECT
CONNECT

(LooplDacodar.Input(8..2),
TOSSizaCountarPralinRag.Data(8..2));

(LoopIDacodar.Out put(8),
(LooplDacodar.Output(1),
(LooplOacodar.Output(2),
(LoopIDacodar.Output (?),
(LooplDacodar.Output(4),
(LoopIDacodar.Out put(5),
(LooplDacodar.Output(6),
(LooplDacodar.Out put(7),

end RIPTargat;

InnnaxPackatLou.Load);
InnnaxPackatHigh.Load))
InnflddraaaLangth.Load);
InnTinaOutLou.Load);
InnTinaOutHigh.Load);
InnRckTypa.Load);
InnTOSTablaRouSiza.Load)|
NoOfLocNatTOS.Load)|

•

(

■ W»"W"—»-" mmmmr^^^mmmtmmmmmmiw^ ^m

Figure Composite Layout (KU OS) for Read. Init_ Parameters Control

in(Af.i<mt m, inKiiMnnii nnaatiMMi

imiP^iwiBppi^JiiiOTS^iiPfiMPiPpp ■"""•'"""' *mmmm^^*m«mmmmm™mm*mi*****»-'*u"' ™.J'***mmmmmm*mmm!li

22

References

1. Fefermce Manual Jbr the A do fagramming Language. Proposed Standard Document. J uly.
1980 edition edition. United Stales Department of Defense. 1980. For sale at U.S. Government
Prinüng Office. Order No. L008-000-00354-6.

2. T. M. Carter and L. A. Hollaar. Implementation of A synchronous Control Unit State
Machines in Integrated Circuits Using the Storage/Logic Array (SLA). Available From the
VLSI Research Group at the University of Utah

3. T. M. Carter. ASSASSIN: An Assembly. Specification and Analysis System for Speed-
Independent Control-Unit Design in Integrated Circuits Using PPL. Master Th.. Department
of Computer Science. University of Utah, June 1982.

4. L.J.Guibas and F.Liang. Systolic Stacks. Queues and Counters. Proa 1982 Conf. on
A dvanced Research in VLSI, M.I.T.. 1982. pp. 155-165.

5. L.J.Guibas. H.T.Kung. and CD .Thompson. DirectVLSI Implementation of Combinatorial
Algorithms. Proc. of the Cal tech Conference on VLSI, January. 1979.

6. Heller. D.E. and I.C.F. Ipsen. Systolic Networks for Orthogonal Equivalence
Transformations and Their Applications. Proceedings. Conference on A dvanced Research In
VLSI. MIT. The Pennsylvania State University. University Park. PA. January, 1962. pp.
113-122.

7. Johnsson, L. A Computational Array fo. the QR-method. Proceedings, Conference on
A dvanced Research in VLSI, M IT. California Institute of Technology. Pasadena. CA.
January, 1982, pp. 123-129.

8. B.Krieg-B ruckner and D.Luckham. ANN A: Towards a Language for A nnotating A da
Programs. Proc of the A CM -SIGPLAN Symposium or the Ada Programming Language,
Boston. Mass., SIGPLAN, December. 1980. pp. 128-138.

9. Krieg-Bruckner. B.. Luckham. D.C.. von Henke. F.W .. Owe. 0. (Draft) Reference M anual
for Anna. A language for Annotating Ada Prcgrams. Unpublished. Reviewer's Copy. October
1982.

10. Kung. S.Y..Gal-Ezer, R.J.. Arun. K.S. W avefront Array Processor Architecture.
Language, and Applications. Proceedings. Conferenoeon A dvanced Research in VLSI, MIT.
USC. January. 1982. pp. 4-20.

11. Organick. E. I., and Lindstrom. G. Mapping high-order language units into VLSI
structures. Proc COMPCON 82. IEEE. Feb.. 1982. pp. 15-18.

12. Organick, E.I.. Carter. T.M .. Lindstrom. G.. Smith. K,F., Subrahmanyam. P.A.
Transformation of A da Programs into Silicon. SemiAnnual Technical Report. Tech. Rept.
UTEC-82-020. University of UUh, March, 1982.

13. Organick. E.I., Carter. T.. Hayes. A.B.. Lindstrom. G., Nelson. B.E.. Smith. K.F.,
Subrahmanyam. P.A. Transformation of A da Programs into Silicon. Scond Semi A nnual
Technical Report. Tech. Rept. UTEC-62-103. University of Utah. November. 1982.

14. Paul, S.S. and Welch, T. "A Programmable LogicApproadi for VLSI." IEEE Trans, on
Computers C-28{Sepi 1979), 594-601.

15. J. G. Peterson. Keys to Successful VLSI System Design. Proceedings of the 1981 CHU
Conference on VLSI Systems and Computations, Computer Science Department, Camegie-
Mellon University, October. 1981. pp. 21-fi6.

 ""■
mmm

VZl

23

16. Postel, Jon: editor. Internet Protocol: DARPA Internet Program, Protocol SpecificaUon.
Tech. Rept. RFC 791. Information Sciences Instituto, USC, Sept.. 1981.

17. Ramachandran. R. A Complexity Computation Package for Data Type ImplemenUtiana.
M aster Th.. University of U tah. Department of Computer Science. June 1982.

18. Seitz.C.1. Ensemble A rdiitectures for VLSI—A Survey and Taxonomy. Proceedings.
Conference on Advanced Research in VLSI. M IT. California Institute of Technolog. Pasadena.
CA. January. 1D8J2. pp. 130-135.

18. Shrobe. H.E. The Data Path Generator. Proceedings. Conference on Advanced Research in
VLSl.MIT.Ceinbridge. Mass, January. 1982. pp. 175-181.

20 K F Smith; T.M. Carter; and C.E. Hunt. "Structured Logic Design of Integrated Ciroiits
Using the Stored Logic A rray." IEEE Transactions on Electron Devices ED-29, 4 (A pnl 1982J.
765-776.

21. Edward A. Snow III. ^utomationo/rriod^esetind^eTidcnt renter tro^^rteweidestflrn.
PhD.Th.. Carnegie-Mellon University, April 1978.

22. Subrahmanyam. P.A. FromAnna+ to Ada: Automating the Synthesis of A da Package and
Task Bodies. Tech. Rept. Internal Report. University of Utah. M arch. 1982.

23. P A. Subrahmanyam. An Automatic/Interactive Software Development System: Formal
Basis and Design. In H .J-Schneider and A .I.W asserman. Ed.. Automated Toolspr
Tnjbrmations System Design and Development, North-Holland. Amsterdam. i982.

24 Subrahmanyam. P.A. 0n A utomating the Computation of A pproximate. Concrete. and
Asymptotic Complexity Measures oi VLSI Designs (toappear). Tech. Rept. UTEC-82-095,
Dept. of Computer Science, University of U tah, October, 1982.

25 Subrahmanyam, P.A. Abstractions to Silicon: A New Design Paradigm for Special Purpose
VLSI Systems. Tech. Rept. UTEC #82-065, University of Utah, January. ^981 (RevisedMay
1982). Submitted for Publication to TOCS

26. Subrahmanyam. P.A. An Algebraic Basis for VLSI Design. Draftof a Research
M onograph. April 1982. Available from the Department of Computer Science. University of
Utah.

27. W ile. Dave. POPART: A Producer of Parsers and Related Tools. System Builder's Manual.
Unpublished, USC/ISI

WWinfn üHPPPHPV« """"wdBum — " * ■ "•"'
111,11' «I«IL

UTEC-82-016

ADA TO SILICON TRANSFORMATIONS:
THE OUTLINE OF A METHOD

by

Lawrence A. Drenan1 and Elliott I. Organick

Dept. of Computer Science
University of Utah

Salt Lake City, Utah 84112

<- This research was sponsored in part by the Defense Advanced Research

i-rojects agency, DARPA contract No. MDA903-81-C-0414.

September 1982

h

1
Presently employed by Western Digital Corp, 2445 McCabe Way, Irvine, CA 92715

r —— 1 "'"•.."I' '■ . iiuiww^wpüpw—1 ■■■""■■'■. "i '■' ' ' ■""» < ■"■"«•ii

ABSTRACT

This report explores the contention that a high-order language specification of
a machine (such as an Ada program) can be methodically transformed into a
hardware representation of that machine. One series of well-defined steps
through which such transformations can take place is presented in this initial
study.

The general method consists of a two-fold strategy:

1. Transform the high-level specification into a
communicating "state machine/data path pairs".

network of inter-

2. Through a catalogue method, map each state machine / data path pair
into a circuit realization.

Four representational levels are utilized in the transformation process.
inter-level transformation is discussed. The four levels are:

Each

1. Ada specification of the algorithm.

2. Machine-description specification of the algorithm, consisting of a
control part and a data part. This version is expressed in a
stylized dialect of Ada developed for this study.

b. Protocol-definition specification of the algorithm, obtained by
inserting constructs that define inter-program unit communication.

i4. Storage/Logic Array (SLA) specification of the algorithm, which can
be mapped directly to, and are regarded as equivalent to, circuit
representations.

Tne transformation strategy relies upon exploiting a one-to-one correspondence
between Ada instantiations of generic packages introduced in the level 2
representation and SLA "modules", which are composed of primitive SLA cells
introduced at level 4.

The transformation methodology described in the paper has been demonstrated for
a non-trivial Ada program example.

1. Introduction

This report reviews elementary principles applicable for methodically

transforming a high-order language rpecification of a machine, such as an Ada

program, into a hardware representation of that machine. In this initial study,

we discuss one series of well-defined steps through which such transformations

. ■.««.»,«. rliillrrlTTfr ■ li-y-niiri .■SäiMMfe

mpmmfmmmmmim 11 ' i "•vm^im^wmi^mmmmmmmmmmmmmmmm «w»i IMIUJI1" "-

can take place.

Research on automating Ada-to-Silioon transformations is currently underway

at the University of Utah [9]. In this report, which does not attempt to

document the specifics of the mainstream of that research, we outline a series

of mappings for transforming individual Ada program units to equivalent

integrated circuits. Our emphasis is on the feasibility of these

transformations and is not concerned with finding a series of optimal

transformation steps. Our purpose is to:

1. Demonstrate one (relatively straightforward) approach by which an Ada
program can be mapped into a specification of an integrated circuit
(IC) through adherence to rule-based techniques.

2. Examine the pros and cons inherent in the most straightforward,
unoptimized approach.

The method presented follows the general transformation strategy suggested

earlier [dj. The essence of this strategy is to represent each Ada program unit

as a synchronous stored state machine part and a data path part. Circuits

derived by following this approach have the general form pictured in Figure 1-1.

The pairing of a state macnine and a data path (i.e.. an environment) is

referred to as an "engine". The hardware realization of an entire Ada program,

or of any subset of program units of that program, is actually a network of

asynchronously intercommunicating engines, each having the form outlined in

figure 1-1. for the convenience of this report, individual Ada task? are

considered to be program units.

A transformation methodology is just beginning to be explored [,11]. There is

need to develop a well-defined set of rules through which such transformations

can eventually become a mechanical process. Some guidelines that distinguish a

set of rules as having the potential for eventual automation have been'suggested

[10].

wafrni.ti,-

■pr unw.Kpi mmmmmmi m IUI

Input

control « Local *
* State Machine • >* Environment *

Part • » Part «

>»««••«««««»«*•«»

» Part »
«««««•«»«•««it»ft«

I feedback v
Output

Figure 1-1: An Engine and Its Two Principal Components

The transformations presented here are considered to be extensions of those

originally outlined in the following sense:

1. Kot only is the high-level specification of a program unit expressed
in Ada; intermediate levels of representation are also expressed in
Ada. "Machine-description" and "Protocol-definition" styles of Ada
programming are proposed to express intermediate transformation
steps, permitting the algorithmic behavior to be checked through Ada
program execution at all intermediate levels as well as the top
level.

2. NMÜS Storage Logic Array (SLA) technology [15] [I1*] is chosen for the
low-level realization of the machine. (More practical versions of
SLAs, called PPLs have been developed to serve as a target for this
transformation process [9j.) SLA "modules" give us a set of building
blocks tnat fit the specific needs of this method. Utilization of
other semi-custom integrated circuit components offers an opportunity
for enricnment of this methodology into the VLSI range.

i nigh-order language Ada program is transformed in three steps to reach the

level of representation from which integrated circuits may be produced directly.

In this report, the four levels, counting the starting level, are callod

"stages". These stages are:

1. Hign-level Ada program

2. Machine-description Ada program

3. Protocol-definition Ada program

H. NMOS SLA program or equivalent

,— mm*** mm mmmmmiim^mmmmmmmmmm

Characteristics of these stages and rules that guide the transformations

between them are presented in succeeding sections. A case study that was

performed following this method on a non-trivial Ada program is presented

elsewnere [6].

[we again stress that circuit optimization (space or speed) is not a goal

addressed in this paper. Thus, in situations where performance or circuit area

or both are critical, the approach presented is unlikely to yield circuits with

characteristics that are competitive with those produced by more custom methods,

especially for many important, but special algorithms, e.g., those that lead to

compact systolic arrays.]

2. Stage 1: High-Level Ada Program

The machines specified and realized by our transformation process are viewed

as ensembles of interacting state machine/environment pairs (engines). The

programming language Ada is well-suited for specifying such pairs. Thus, a

strong correlation exists between data abstractions in Ada and data abstractions

in certain views of integrated circuits; indeed we exploit this correlation.

(i

An Ada program is composed of one or more program units [5] [2]. A program

begins execution as a single thread of control in the main subprogram, but can

initiate tasks, each of which nas associated with it a separate thread of

control. A program unit in this model is analogous to a machine that is

initiated via a single "Go" button, but which is capable of delegating work

among potentially concurrent sub-machines. In Ada, such sub-machines lake the

form of tasKS. Ada also offers flexibility and control in specifying the

communication between program units, i.e., in specifying the kind of interaction

between units. Data abstractions represented as Ada packages, another form of

program unit, are also transformable into individual engines whose operators

eitner transform given instances of a data type or own and operate on individual

instances. Shifting such an engine from idle .to a particular active state

"'LU<^M0i.- ,. tF^r .
m&^ä^mm

i^nfwipuiBuiuiiijummm^nimww^^

corresponds, at a higher level of abstraction, to the activation of an Ada

pacKage operation.

Information needed to represent an engine can be extracted from an Ada

program unit for use in representing the local environment (data path) and the

state machine (controller). This information is drawn both from the

specification part and from the body part of the program unit being mapped to

the next stage.

Stage 2 representation elaborates intra-program unit constructs while Stage 3

elaborates inter-program unit communication constructs. The language for Stage

2 is a stylized but legal form of Ada.

3. Stage 2: Machine-description-level Ada program

3.1. The Role of Stage 2

A Stage 2 program achieves two objectives:

1. Infers a collection of needed hardware modules from the declaration
part of the program unit and identifies the needed modules through
instantiation of generic packages.

2. Transforms infix expressions represented in the Stage 1 form into
prefix form.

The distinction between the control flow and data flow of a program is sharpened

by the transformation f^om Stage 1 to Stage 2. Thus, in its Stage 2 form, the

program takes the form of a state machine and the data path it controls. The

declarative part of the Stage 2 form represents a collection of hardware modules

(a "data path") inferred from the declarative part of the Stage 1 form. The

body part of the Stage 2 form represents a state machine whose structure is

inferred from both the declarative and body parts of the Stage 1 form. The

Stage 2 language style has two distinguishing features:

- extensive use of generic building blocks

.

',"ÜI,IU "■■""' *—m*~m mmm mm1 " "wwu

use of the "engine extension" style of representing states and state
transitions

2

The terms "building block" and "module" have specific meanings below. A

"building block" refers to a generic pacKage instance introduced in Stage 2 to

model a particular component of the data path. A "module" refers to a

collection of SLA cells from which the full circuit will be constructed. Every

generic package instance identified in the Stage 2 representation maps to a

corresponding Stage 1 SLA module.

3.2. Stage 2 Examples

Figure 3-1 is an example of a generic package decj.arat-.on for a building

block representing a counter. An instantiation of this package (e.g., "package

C is new Counter") corresponds to the module's "black box" representation (see

Figure 3-2). The SLA program that corresponds to Figure 3-2 is presented in

Figure 3-3.

generic
lo_value: integer;
hjL.value: integer;

— allows one to instantiate
— counters of various sizes

package Counter is
— Function:

a counter with load, lookup,
increment, and decrement operations

procedure Load(
load_value: in integer);

procedure increment;
— Increment by 1 is implied.

procedure Decrement;
— Decrement by 1 is implied.

function LOOKUP return integer;
— fieturns tne current value,

end Counter;

Figure 3-1: Counter Building Block Package Specification

With a few exceptions (to be discussed below) all variables and operators in

the Stage 1 program unit are transformed into, instantiations of generic

v -».* ■»•--

,-

mini« A iiiiLui \mm\ tmm»mmmiiißm>>i'^^»m.mimfinmmmmmmmnmiimmmi^ii'irmmmi^m

OUT IN

LOAD

INCREMENT

DECREMENT

mmip

Figure 3-2: "Black Box" Representation of a Counter Module

packages. The Stage 2 code is then restricted to describing actions through the

use of these instantiated packages. Stage 1 to Stage 2 transformations result

in code that is composed primarily of function and procedure applications. For

example, a line of code such as

A := B + C;

is transformed into

A.Write(Add.Go(B.Read, C.Read));

wnere A, B, C, and Add are previously instantiated packages. Thus, if tne Stage

1 code includes the object declaration

A, B, C: integer;

the corresponding Stage 2 form would exhibit the instantiations

package A is new Register(word_length => integer);

package B is new Register(word_length => integer);

package C is new Register(word_length => integer);

-—r
 ■■■Il mmmm^

0 0 c 0 c 0 c 0 0 1 1 1 1 1 1 1 1 1 1
1 2 3 11 c 6 7 8 9 0 1 2 3 * 5 6 7 8 9

1 mm __ _ 0 B 0 B 0 B 0 B 0 B I;
2 n n n ii

3 ii n II II

1 I
1 ■

H n n II II
i >

1 •
5. F B F B F B F B 1$

1 >
I ;

6: + 1 +
1 1

7: + 1 + 1;
6: 1$ =+=1$ i .

i)

9: .+ 1$" " 1;
10: 1! II II ! ;
11: $R ii II II II ii ir " 0 0 1 0$

' i
i .
i ,

12: $S II it n n II II " 0 0 1 1$
13: »R II II •i II " 0 0 1 0$ i ,
14: $S n II n II " 0 0 1 1? i j
15: $B n n " 0 0 1 0$
16: $S II n " 0 0 1 u
17: ?R " 0 0 1 02 i.

i i
18: is " 0 0 1 II II- = : 15 1;
19: $0 s II 1 0 0 " "$ n II n II .

20: $0 s 1 R It 1 0 0 II II1 II II II ■
21: $0 s 1 K 1 R 11 1 0 0 •1 "$ II II II n.

22: $0 s 1 p. 1 R 1 R " 1 0 0 II 11^ n II II

23: !p1 R 1 R 1 R 1 R II 1 0 0 11 „$ II 11 n
i

n •

24: $1 R " 0 1 0 II II $ II II n

25: $1 R 0 S " 0 1 0 ,1 n$ II II II n.

26: 1 n 0 £ 0 S " 0 1 0 1. II5 II II n ii.

27: 1 R 0 S 0 S 0 s " 0 1 0 II n. n II II H.

28: rO=S = Ö: :S = 0: :S = 0: •S "sOs 1=0 = II 11 $ n II n n.

29: „ _ , __ __ II 11 II II .
i

Figure 3-3: SLA Program for Counter Module Using the SCLED Notation

Furthermore, encountering "+" while parsing Stage 1 code would lead to the

inclusion of

package Add is new Adder;

in tne corresponding declarative part of the Stage 2 code. Kence, the code

presented in this example would eventually map into a hardware structure

abstractly presented in Figure 3-k.

The design of the building blocK set and the design of the SLA module set

must be coordinated. As a possible means of enforcing the design discipline, a

Stage 2 programmer is provided with one or more packages that specify the set of

mmmmmmm. iiiiiiwiiaiaijiuiiiiHiiiniiLiiMiiMwini

READ C

STATE
MACHINE

0000

0001

.

REGISTER

READ B

REGISTER

GO ADD

ADDE!

URTTr A

REGI iTER

Figure 3-4: Hardware Realization of "A := B + C;"

generic packages available. The programmer can thereby be restricted to

expressing algorithms with instantiations and use of the pre-defined generic

packages.

3.5. The "Engine" Extension to Ada

The body part of a Stage 2 program is sub-divided into states denoted by

labels. To represent the mutually independent actions that can occur in the

same state of a state machine in standard Ada, one could use the "verbose form"

that declares (and then initiates) a set of dynamically created tasks. A more

succinct equivalent is possible if we were to include an "engine extension" for

Ada to specify a similar objective. Used at Stage 2, the engine extension

allows one to specify a sequence of Ada statements that can be translated into

concurrent actions.

An engine clause has the structure illustrated in Figure 3-5. Within the

scope of an engine clause, the sequence of statements bounded by two state (

iiiiiiiniVfiifiilMltii . wiWi,iW*Mftiitiriii"iaiifciiiiWtiiiliMl

■»■IPW^PPHI.III.IM I" >.ii J .imiiwii»!.!» 1' " '

10

^^mmmmmmmimmK

engine Example is
begin
<<State_Start» — initial actions

— executed in parallel

<<State_l»

«State_2»

<<State_stop>>

end Example;

— actions to be
■— executed in parallel

— another set c' actions which
— can be executed in parallel

— final state
null;

Figure 3-5: Structure of an Engine Clause for Representing "Transition Graph"
of a State Machine

labels, e.g., <<State_1» and <<State_2» above, are actions that can occur in

parallel. Execution of a "goto" statement within such a (labeled) sequence

terminates the actions witnin that state (i.e., triggers a state transition).

(To ennance readability, we follow the convention that the first node of every

engine clause be laoeled "State.Start" and the final node be labeled

"State.Scop".)

westing of engines clauses follows Ada scoping rules. An engine may be

declared local to another engine just as one procedure can be declared local to

another procedure. Thus a local "sub-engine" may be called from its containing

"main-engine". The effect of such a call is to transfer control to the label

State_Start of the subengine at the time the subengine is called and to return

control to the main engine wnen the subengine completes.

Note that this tecnnique does not imply a relationship between state

transitions and units of time. Although the particular SLA implementation

chosen for Stage 4 in this work is synchronous, a syntax comparable to the

engine extension has been oe mapped to asynchronous implementations [4]. An

algorithm used to determine the operations for which one can specify parallel

execution, i.e., multiple actions within the same state, is presented in Section

^^_

•

^Hgippp I«)«! IIIIPKH -^™^ ii.tmu »ivimmwmmimjtn mmmw ~—. lt'-J|i|-J|'.>|l||VJ)nMi*PHpMP! "«MnmRmnniMimM

11

5.

t

5.4. Building Blocks and Modules

For the purpose of tnis report, the following building blocks and modules

nave been designed [6]: Equals, Less_eq, Bool_eq, Counter, Loop_Counter,

Register, &oolean_fiegister, Memory, and Two_D_Memory.

Building blocks and modules generally have parameters for specifying word

lengths. Such specifications are provided by the Stage 2 programmer as part of

an interactive design process. Thus, most generic package declarations contain

the formal generic parameter

type word_length is range <>;

3.5. Three Intrs-program Unit Communications Protocols

Three different intra-program unit protocols are defined, corresponding to

the "function", "procedure", and "procedurE" Stage 2 subprogram declarations.

Tnese Stage 2 declarations convey assumptions about the number of states

required for an operation to "complete its job". Different protocols may be

utilized for invoking various operations within an implemented package. The

corresponding SLA implementation is invoked with whichever protocol is

appropriate. Protocols for communication between circuits representing separate

Ada program units are discussed in Section 6.)

Operations are divided into two classes: those that return a value (e.g., a

Read operation) and those that do not (e.g., a Write operation). Hardware

implementation of the former requires that the module includes storage elements

to nold the value of the output parameter (or function result). The protocols

presented below ensure that such storage elements are sampled only after the

correct values are loaded. In operations that do not return a value, the

protocols ensure tnat the module completes its job (for example, modification of

a global value) before a potentially conflicting operation can be initiated.

.ft«i^^.!«aM^i.^tt«ri^
^^■■^^..^-^^..^„-■^^^

MPWMf in^mmm WPPWI^PWf"« mm, ■«pmnnnaiLjiu^Muii "^^WPPPPWBiP

12

The distinguishing characteristics of operations adhering to each of the

three protocols are as follows:

- ^inction" ProtOCO]: The operation completes in the same state in
wtucn a request for the operation reaches the containing module. Two
cases are implementable:

f

1. The function result is always available.

2. The request is received in pha^e Phi-1 of a given clock cycle

TooT"*result t0 be available in ph-6Phi-2 oTlTs1^

k /U?\t\0n operation ^^ a« the Lookup operation on a Counter
module) does not need to issue an acknowledge to its requestor thS it
has Performed xts duty, because it can be assumed that the correct
result will be available in a known state. correct

• "Proc^urP" prQtPQO]: The operation completes in the state immediately
following tne one in which the request reaches the module. As in the
function protocol, it is not necessary for the procedure operation
^sucn as the increment operation on a Counter module) to inform the
requestor that the desired action has been performed.

Z?^r!^Sr^1\ FOr thiS 0Peration. it cannot be assumed that
rTJZ completed in the same state in which the request is
received, or even in the next state. Unlike the two previous
protocols, it is necessary for the containing module to inform ?he
requestor when execution of the desired action has been cipleteS
The scenario is as follows: a requestor initiates a procedurE
operation by issuing a "Go- signal; the procedurE in turn signals Us
caller, upon successful completion, vrith an "I'm done" signal We
call tms convention the "Go/I'm done" protocol. Its use allows the
introduction of arbitrary delays in the state transitions for clocked
scnemes tnat exhibit a single thread of control. The protocol, which
is enforced by construction, ia implemented as follows:

• Tne requesting engine R sends a "Go" signal that invokes the type

state -^Tf1.0" .P 0' a containinS module M and then enters a
state wnere R waits for M to send an "I'm done" signal.

* The initial state of rt is a wait state for a "Go" signal A Go
to

0rp^ "^f th^States the aeration P to commence 1 transition
to P). After the operation P completes M emits an "I'm done-
signal before returning to its initial state.

Tne protocol permits representation of a single thread of control that
traverses from the requesting engine R to the host module M of the

?ra
0n!?Mt 0p

r
eration P and back again- The sequence of state

transitions for every procedurE operation is local to one, and cnlv
one, engine. Hence, there is no possibility for contention. It "is

I --,,.-,> .-./[»ii v

wmmmm ■mmin-

13

this fact that allows us to use the simple "Go/I'm Done" protocol
(instead of a somewhat more complex Request/Acknowledge) for intra-
engine communication. The Read and Write operations on the Memory
module are examples of the procedurE protocol.

4. Stage 1 to Stage 2 Transformations L. '.

4.1. Transforming Simple Expressions

Simple expressions are transformed in a straightforward way. Registers

replace variables, comparators replace relational operators, adders replace plus

signs, etc. Such transformations are syntax driven.

This style of transformation leads to the allocation of possibly redundant

modules. Clearly, circuits produced by this method tend to be wasteful of "real

estate". However, timing and communications are simplified in activating

individual modules, since each Stage 2 call on a subprogram operation of a

generic instantiation then corresponds to a unique control line in the hardware

level. Some simple optimizations are possible within tnis framework; for

example, use of counters where adders are not needed, and use of shift logic,

wnere suitable, for multiplication or division.

4.2. Transforming Control Statements

The interpretation of control statements (e.g., loop, case, if, subprogram

calls and task entry calls) lead to control flow changes. We discuss the

required transformations for sucn constructs in this subsection on a case by

case oasis. In general, these transformations mimic well-understood strategies

used by compilers L1J.

functionsJ. and tasks The initial action to be performed in the

body parts of procedure, function, and task entries with in parameters is the

loading of the actual parameter values into the Registers that implement the

corresponding formal parameters. Statements directing such actions must be

- •
-sr

«" ■'" -"' '•'' > Jmimiw^mmmim^mmmmmmmmmiiiyn mwm.wmmwm\m9mumviiiii

mail ,.,

09

IM

inserted into the Stage 2 program.

Out parameters also require instantiation of Register packages so their

values can be loaded into these Registers as if they were local parameters and

hence mimic the "cop: -restore" parameter passing mechanism demanded (for the

normal case) by Ada semantics. A similar treatment is required so that function

values can be properly returned.

f

Building blocks that represent formal parameters of program units are derived

in Stage 2. For example, if procedure P and function F are specified as:

procedure F(
xx: integer;
yy: integer);

function F(
zz: integer)
return real;

then four generic pacicages are instantiated:

package xx is new Register(word_lengtn => in integer);

package yy is new Register(word_length => in integer);

package zz is new Register(word_length => in integer);

package f_result is new Register(word_length => real);

— For P.

For F,

i>--3TATEM£NTS in the simplest case, if-statements are manifested in Stage 2

as structures of tne form:

<<State_for_if» if condition then
goto State_X;

else
goto State_Y;

end if;

Missing but implioit else clauses are explicitly inserted. For example:

else
goto State_<the_state_where_the_2_branches_join>;

I'ilB—IIIM ■-inn,ni||-ffi-T----—-■^-^- - ■armi.rttfMii - " - —--—

''' ■ " '***«*""•*.* >nmmmmKmmmmmmmmiii^m

15

it is certainly possible, and in many cases advisable, to include actions in

the branches before the goto statement, thereby reducing the total number of

states specified in the machine description. For example,

if mem_value = 0 then
pointer := p_find;
exit;

end if;

is transformed into

declare
equals_result: boolean := false; — Initialized to

— false,
begin

<<State_4» Equals.Test(

Kem.value.LookupO, 0, equals_result);
goto State_5;

<<State_5>> if equals_result then
Pointer.Write(P_find.Lookup());
goto State_6; — Goes to exit.

else — Else is now explicit
goto State_7;

end if;

Notice the use of the boolean variable "equals.result" to represent the value of

tne condition. The rule followed is that the use of identifiers with "„result"

as a suffix specifies Stage k routing to a storage element that is located

within tne module specified by the prefix (e.g., Equals). The storage element

is loaded with the result of the operation. Every relational operator building

blocK has such a "buddy" boolean variable. Out parameters in procedures and

procedurEs, such as the value returned from a memory Read procedurE, are also

treated this way.

BLOCKS A block is treated as a parameterless procedure.

FOR-LOOP? A generic Loop_Counter package that computes and holds the loop

parameter value is instantiated for eacn Stage 1 for-loop. This package also

™»™n-»-»—-—«———i »•-^-^-™~™I^^^«WI«PWB«W"II^W»--^PH

16

J

stores the value of the upper limit of the discrete range. In case the upper

bound is a previously declared variable, e.g., Lim, a module that stores Lim's

value already exists, so the extra storage element is redundant. This

redundancy is accepted because, at the hardware level, the simplicity of

communication and saving of extra communications lines appears to outweigh the

use of extra storage space. Figure 4-1 shows the Stage 1 to Stage 2

transformation paradigm used for for-loops.

STAG£ 1 STAGE 2

— Declaration part
package Parameter is new Loop_Counter;

— Instantiation.

:
for parameter in A..B

loop
Statement_1;

Statement_2;

Statement^;
end loop;

— Body part
<<State_X» Parameter.Load (A, B);

— Load loop values.
— A is initial value.
— B is upper limit.

<<State_Y» if Parameter.Test() then
~ Test the parameter
~ versus upper bound,

goto State_Y+l;
— Go to the sequence
— of statements,

else
goto State_Z+1;
— Exit from loop,

end if;
«State_Y+1» Statement.!;

<<State_Y+2>> Statement_2;

<<State_Y+N» Statement.»;

<<State_Z>> Parameter.Increment();
goto State_y;
— Go back to the test.

<<State_Z+l»

— Continue with the
— rest of the program.

Figure 4-1: A Paradigm For-Loop Transformation

rnsmt sassm

mmmmmm

v

— End loop body.

17

tfHTLE-LOOPS While-loop transformations require the instantiation of as many

building block packages as required to evaluate the while-loop condition. The

Stage 2 expression of a while-loop whose condition is a simple equality test is

modeled in Figure 4-2.

«State_Y» Equals.Test(
first_operand, second_operand, equals_result;,

goto State_Y+1;
<<State_Y+l» if equals_result then

goto State_Y+2;

else
goto State_Z+T, -- Exit the loop.

end if;

«State_Y+2» Statement.!; - Begin loop body.

•

«State_X+N» Statement J^;

<<3tate_Z>> goto State_Y;

«3tate_Z+1» — ...rest of program

Figure 4-2: Stage 2 Representation of a While-Loop

5. Thoughts towards a compiler

Tne method just presented informally emulates a multi-pass compiler that

accepts as input a Stage 1 Ada program (i.e., a "normal" program confined only

by restrictions we may choose to impose on the use of Ada) and produces a Stage

2 program, wnicn is also legal, tnough "stylized" Ada code. This method is

-compiler-like" in the sense that it is syntax driven and in that the

transformations are viewed as production rules.

Tne Stage 1 to Stage 2 transformation involves several passes over a program

unit. Backtracking within a given pass is sometimes necessary. For instance, a

pass may begin by scanning the program unit and declaring the instantiation of

all generic pacRage objects that can be determined at that time, and may end

„itn the declaration of more package objects that have been determined to be

necessary while scanning the code. The passes can be organized as follows:

r.'.ütfci.tte...

mm

———

18

Pass 1 - Transforms the declaration part of the program unit and the
simple statements. Declares and instantiates packages that correspond
to formal parameters and inserts code to write the actual parameter
values into these packages.

Pass 2/Part A - Transforms compound statements, that is, loops if
statements, accept statements and blocks. (Simple statements
exposed" in this step are also transformed.) Records situations that

require backtracking. Also records situations that require new
packages to be instantiated.

Pass 2/Part B - Backtracks and replaces "temporary" state markers with
appropriate state numbers.

Pass 3 - Instantiates new packages whose need has been previously
recorded. Transfonns expressions that involve relational operators
and expressions that similarly involve an increase in the number of
states.

I

5.1. Determining concurrency within a state

Determining which actions may take place in parallel is an important part of

tne methodology. Reasoning can be applied to specific cases based on the

function, procedure, and procedurE specifications. However, a general rule is

desirable. The following principles (constraints) are adhered to:

1. Jit the ^tage 2 level no two operations of a given package instance
may be called within a given state. This applies both to multiple
calls on a single subprogram contained in a generic package instance
and to single calls on different subprograms of the same packace
Thus, tne calls '

Point.Load;
Point.Test;

must be invoked in separate states, wnereas

Point.Load;
Slot.Test;

I

or

Point.Load;
Slot .Load;

may be initiated concurrently.

2. After receiving an appropriate "Go" signal, a module M (executing a
type procedurE operation; will not recognize another "Go" signal sent
from a module N until after M raises the matching "I'm done" signal.
If a module N were to send such a signal, its "Go" signal will be

mmmmmmmmmm ■' "

.

19

ignored and the action that N requests of M would never take place.
Furthermore, N runs the risk of mistakenly viewing the "I'm done"
signal M sends upon completion of the previous operation as intended
for N and will therefore proceed in error.

i. The hardware modules developed in this report have no underlying
storage resource management: they allow for only one "activation
record" at a given time. Thus, overlapping invocations will result
in undefined behavior.

The rule is sufficient for our purposes to ensure proper behavior but no

claim is made that it is always necessary. (Mote that Ada semantics permit

concurrent activations of operations within a package, although such

permissiveness can lead to non-deterministic behavior.) The fact that a unique

module is created in hardware for every variable, every computation (e.g.,

addition), and every comparison, suggests that control line conflicts will be

avoided as long as no module is presented with more than one command at a time.

6. Stage 3: Protocol-definition Ada program

tin Ada task defines a distinct thread of control. Ordinary subprogram calls

by a tasK T are regarded as traversals along this thread of control. Since

contention for subprogram activation has been eliminated by the constraints we

nave imposed, Go/I'm done protocols can be used safely in such cases. Inter-

task communication is more complex since two separate threads of control are

involved and since contention is possible. Such communication is, therefore,

implemented With a four-cycle Request/Acknowledge protocol. Implementation

details for both Kinds of communication are introduced in the transformation

from Stage 2 to Stage 3-

6.1. Motivation for Stage 3

Like its predecessor, tne Protocol-definition stage is specified in legal Ada

code. The discipline introduced in Section 3 is extended. The Protocol-

definition stage realizes two goals:

1. wew states are inserted and "Line" packages are instantiated to

—■MI

T- -^mmmmmmmmmmmmmmimm^^" ' ••■■•• -^mmwumm

•

20

specify protocols for connnunication between the program units
expressed in the Stage 1 code.

Note that the transformations presented thus far have been concerned
with communications within a given Stage 1 program unit. Since each
of the original program units maps into a unique state machine/data
path pair (engine), tasK entry calls, procedure calls, and function
calls between these units cannot be represented by simple control
line assertions. Instead, such communication must be implemented
either using Request/Acknowledge or Go/I'm Done protocols.

2. State label numbers are converted to binary numbers, primarily to
facilitate the encoding of the Stage 3 body part as an SLA state
machine, wnicn takes place in Stage H.

In the transformation to Stage 3, the list of declared hardware modules is

completed and the state machine is reduced to a sequence of if-statements, goto

statements, and subprogram calls representing control line assertions.

6.2. Implementing Inter-Program Unit Communications Protocols

Stage 3 inserts protocols only for those program units that are originally

specified in Stage 1. Protocols are already defined (in Stage 2) for program

units that are introduced as a result of building block generic package

t instantiations.

■

In hardware .-epresentation each inter-engine communication requires two

communications lines. Each lin« (i.e., wire) is realized by the instantiation of
n

the generic package named "Line". The specification part for Line is:

generic
package Line is

procedure Lift;
— Function:

i Assigns tne logical value 1.
procedure Lower;
— function:

Assigns the logical value 0.
function Test return boolean;
— function:

Returns true if wire has logical value 1,
else returns false,

end Line;

21

An instance of this package corresponds to a physical line whose level may be

lowered, raised, or tested.

6.2.1. Transforming Procedure and Function Calls

A procedure or function X is mapped from Stage 2 to Stage 3 as followsS

1. Line packages X.Go and X.Done are instantiated.

2. The decision "if X_Go.Test()" is inserted as the initial state. (The
machine remains in this state until X_Go.Test becomes true. Lines are
always initialized to the logical value 0, regarded here as false.)

i. "X_Done.Lift" is made the action of the final state. The state
macnine of X takes the necessary actions to allow the caller to "see"
the return values at the same time X_Done is sensed true.

Program units that contain procedure and function calls to other program units

must also be transformed to reflect the calling protocol. For example, the

action:

<<5i.ate_1>> X(some_arguments);
goto State_2;

is transformed into:

-- Call on X

<<State_1>> X_Go.Lift;

X(some_arguments); — The original action,
goto State_2;

«State_2» if X_Done.Test then

— Load tne out parameters/function result
— into proper register(s).
goto State_3;

else
goto State_2;

end if;

Notice cnat the original invocation of X is left in the code.

6.2.2. Transforming Task Entry Calls and Accept Statements

The transformation of tasks is similar to that for subprograms. The scheme

outlined in the previous subsection is followed, although "X_Req" is substituted

for "X_Go" and "X_Ack" is substituted for "X_Pone". Additionally, a Line

■" ■'■"-' —~

. •

22

package is instantiated for each entry statement of the task. This Line and the

XJteq Line are "raised" concurrently by the calling task (via a calls to the

respective Lift procedures). Each accept alternative in the receiving task

tests the tasks request line and the corresponding entry statement line before

performing the desired operation. As an example, consider the task named

"Storage" that models a Read/Write memory. Storage is specified in Stage 1 as:

task Storage is
entry Read(
address: integer;
value: out integer);

entry Write(
address: integer;
value; integer);

end Storage;

The instantiations

package Storage_Req is new Line;
package Storage_Ack is new Line;
package Storage_Read is new Line;
package Storage_Write is new Line;

must be visible to Storage and all tasKs which can call it

The body of Storage is realized as:

■" ■ ■- wrmmm "*~~-"' •■"-■,1

23

«State_0000» if Storage_Read.Test() and

Storage_fieq.Test() then
goto State_0001;

elsif Storage_Write.Test() and

Storage_Req.Test() then
goto State_0100;

enfl if;

<<State_0001» accept Read(
address: integer;

do
value: out integer)

— Perform read operation.
— This may take several steps
— in the general case but here
— we simplify to one step.

end Read;
goto State_0010;

«StateJDOlO» Storage_Read .Lower();
goto State_0110;

«State_0100» accept Write(
address: integer;
value: integer);

do
— Perform write operation

:

end Write;
goto StateJJIOl;

«Stats_ö 101» Storage_Write . Lower'();
goto Star,e_0110;

«State_0ll0>> Storage_Ack.LiftC)j
— Raise the acknowledge line.

goto ■3tate_0111;

«State_öin>> if Storage_Req.Test() then
— Keep Ack high until Req is lowered,

Storage_AcK.Lift();
goto State_0111;

else
Storage_Ack.Lower();
goto State_<some_next_state>;

end if;

1 " ' "W ""ILII
1

24

A Stage 1 call on the Storage write operation such as

«State_4» Storage.Write(

1,
Some_Value.Readt));

goto State_5;

is realized in Stage 3 as:

«State_1000» Storage_Req. LiftO ; ~ Raise request line.
Storage_Write.Lift(); ~ Raise write accept line.
Storage .W"rite(

1,
Some_Value.Read());

goto State_1001;

<<State_1001>> if Storage_Ack.Test() then
Storage_Req.Lower(); — Test acknowledge line.
goto State_<some_next_state>;

else
Storage_Req.Lift ();
goto State_1001;

end if;

1
Note that the effects of these transformations are to;

1. Force tasks to follow standard Request/Acknowledge protocol.

2. Create an implicit case statement which directs the proper accept
alternative choice (e.g., State_0000 above).

b.i. Transformation to Binary Numbers

xn Stage 4, states are encoded as a series of "0" and "1" cells that are

connected to Sfi flip-flops, for example, <<State_0110>> is realized by placing

"0", "1", "1", and "0" cells in the same row (AND plane) in adjoining columns a

matrix called and SLA. The level associated with this row is "raised" whenever

tnat sequence of values 0110 is stored collectively in the flip-flops. We

regard raising this row's level as equivalent to being in State 0110.

To facilitate this encoding, state label numbers are transformed to binary

representations as the last action of Stage 3. With the completion of the state

"H ' »I111111 l"1 ' mmmmmm "—' ™mmm**—*m mm

25

expansions outlined earlier in this section, the state machine is fully

specified.

In summary, Stage 2 to Stage 3 transformations can be performed in two

passes. The first pass inserts the necessary state and package instantiations

to specify the communications protocols. The second pass converts the state

label numbers to binary numbers.

7. Stage 4: SLA Program

This section discusses SLA programs and their derivation from Stage 3.

7.1. Background and Use of SLA Programs

SLA is an acronym for Storage Logic Array. SLA methodology lends itself to

the realization of interacting state machine/environment pairs; they are used to

describe both the state machine and the data path components. The SLA concept

was originally conceived by S. Patil [15] [14], extendea by Patil and

Weicn Ll2j L13J, and further extended by K. Smith [18]. Simply put, SLAs are

"folded" Programmable Logic Arrays (PLAs) in which column and row breaks in both

the A^iD and OR planes allow tne design of independent arrays in the same

circuit. "Programming" an SLA involves the placement of symbolic elements (with

tne nelp of an editor) in a manner tnat may result in representing an arbitrary

number of independent finite state machines whose interconnection is specified

by tne SLA program. These symbolic elements may tnen be automatically

translated into IC layout masks in tne appropriate circuit technology. The

translation of the SLA progran into an integrated circuit can be viewed as the

actual placement of finite SLA machines onto the active area of the chip. SLA

programa make it easy for the designer to visualize the physical layout of the

circuit from its logical description, A designer who thinks primarily in terms

of the functional description effectively specifies the physical layout as well.

Smitn and co-workers have designed SLAs in I2L, NMOS, and CMOS technologies

[16]. More recent work by Smith's group has extended the SLAs based on a new

 «",l "'^^

26

concept for cell set design. The new circuits, called PPLs, are being primarily

applied in the design of asynchronous state machines [4],

Our method uses SLks in two ways:

1. The SLA modules previously developed are treated as hardware
components that replace the Stage 3 generic packages. Note that no
formal method is employed for the design of the SLA modules.
However, eacn module has been simulated independently to test its
correctness.

2. Tne state machines, including control and feedback lines, are encoded
as SLAs L13J.

*e use SLA cells to build a library of composite "macros", which are the

Stage 4 modules described in Section 5. These modules comprise the data path

and are inserted using a cell substitution approach. In this sense our use of

SLAs is similar to the use of macro cells [3] and Associative Logic [7].

The particular cell set employed in this work was the 5 micron NMOS set

described in [17j. An SLA editor (SCLED [20]) and a SLA siauUtor (NS1M [19])

were built and tested at Utah; both were used extensively in this study.

7.2. Encoding of State Machines

The itage 3 specification of a state, say. State 0110, results in the

connection of tne appropriate SLA cells such that the row corresponding to State

0110 goes nigh at the proper time. Further, in each 5tate the levels on columns

"connected" to the row of a given state are raised when the SLA is in that

state. Tnese columns are the sources of the control lines, which correspond to

tne operations to be initiated in tnat state. A two-pass method is employed to

accomplish tne desired encoding. This technique is presented by referring to a

simple example. Consider the Stage 1 if-statement construct:

27

if A = B then
C := C + 1;

else
A := B + 1;

end if;

I

With the assumptions that "A" maps into a Register while "B" and "C" map into

Counters, this construct could be specified in Stage 3 as:

<<State_0000» Equals.Go(A.Read, B.Lookup, equals_result);
goto StatejOOOl;

«StateJDOOl» if equals_result then
goto State_OCnO;

else
goto StateJDOl I;

end if;

«State_0010» C.Increment;
goto State_C110;

«State_0011» B.Increment;

goto State_0100;

«State_0100» A.^rite(B. Lookur ^;
goto State„0101;

«State_0101» B.Decrement;
goto State_0n0;

«State_0110» null;

In the first pass, the states of Stage 3 are scanned sequentially. Every

function and procedure call on a generic package instantiation in Stage 3 is

transformed into the raising of a control line when tne row corresponding to the

given state "goes high". If-stateaent«, are transformed into two rows, one for

eacn possible result of the if. Tne state macnine layout rules employed are:

1. For simplicity, columns representing test inputs and control line
outputs that are used to communicate with other state machines
(program units) are placed on tne left of the state machine and those
that communicate to local modules are placed on the right.

2. Rows and columns are annexed as needed as the Stage 3 states are
scanned. When a new Stage 3 subprogram call is discovered, a column
is designated to carry the corresponding control line.

- ■

imiini im " "illlliBMIIitlB ^jMan «MOn , . ii

26

Figure 7-1 presents the result of the initial encoding pass over the Stage 3

code presented above.

OOOOO000O0O0OÜOO
0000000001111111
iss^se/Mois^so

1:F F F F 0B0B0B0B
2:

5:
6:

7:
6:
9:

0
0
Ü

0 0 0 s
0 0 S 1 R 0
0 0 S 1 1

10: 0 0 S 1 0
11:
12:

13:
14:

0
0
0
0

0 S 1 R 1 R
1 0 0 s
1 0 S 1 R
1 1 0

+ + +

1 I —> B. Decrement
I >
 >
 >
 >
 >
 >

A.Write
B.Increment
C.Increment
B.Lookup
A.Read
Equals.Go

result from Equals

Figure 7-1: First Pass Stage 4 Encoding

Note now state 0000 (row 7) raises columns 10, 11, and 12. This row

corresponds to the "Equals.Go(A.Head, B.Lookup,...)" operations specified for

state 0000 in tne Stage 3 code above. State 0001 (rows 8 and 9) corresponds to

the if-statement. HOW 8 "goes hign" if the result from tne comparator carried

in column 9 is false (i.e. a /= b). Row 9 goes high if the result is true (a =

h). Mote how new columns are added on the right as new procedure and function

calls are scanned in the Stage 3 code. Note also how the B. Lookup (column 12)

is raised in State 0000 (row 7) and in State 0100 (row 12). The second time

"B. Lookup" is scanned in the Stage 3 code we remember that a column was already

dedicated to this control line; we don't dedicate another. Since this simple

circuit does not communicate with other state machines, all control line firings

are on the right side.

Kau. -

5

29

In the first pass the "+", "1", and "O" cells are placed only as the need for

them is discovered. A dispersed layout often results. The second manual pass

re-arranges the control lines to group lines that are directed to the same

module. Thus, the second pass merely clusters the control lines, arranging them

according to their destination. The effect of the second pass is to simplify

routing of the control lines to the modules. Figure 7-2 presents the result of

re-arranging of the columns of figure 7-1. Note how commands going to the same

module are now on adjacent columns.

0000000000000000
0000000001111111
1234567890123^56

1: F F F F ObOBOBOB
2:
3:
4:
5:
6:
7: 0 0 0 OS + +
b: 0 0 0 S 1 fi 0
9: 0 0 0 S 1 1

10: 0 0 S 1 0
11: c 0 S 1 R 1 R
12: 0 1 0 0 s
13:
14:

0
0

1 0 S 1 R
1 1 0

I I—> C.Increment
I > B.Decrement
 > B.Increment
 > B.Lookup
 > A.Write
 > A.Read
 > Equals.Go
result from Equals

Figure 7-2: Second Pass Stage 4 Encoding

7.3. Layout, Routing and Busing Issues

An algorithmic method for cell layout and routing has not yet been

incorporated into our method. Reference [6] discusses a simple manual routing

method tnat utilizes the fact that the declaration part of a given Stage 3

program unit specifies the modules utilized by that unit.

I

■

30

As mentioned earlier, engines that are physical representations of tasks

communicate through the use of the Request/Acknowledge protocol. In the

hardware rea^m, such engines communicate via buses. A circuit derived by our

method may include several buses, which may be private (non-contend ion) or

public (with potential for contention between the users). Both types support

the Request/Acknowledge protocol. It is well-known that a Request/Acknowledge

protocol strategy will not work on a contention bus without some sort of

arbitration mechanism. The Request/Acknowledge protocol implemented here

closely follows the scheme outlined by Seitz [16], and appears to be adaptable

to his arbitration scheme. Bus issues are detailed further in [6j.

1

8. Conclusions

The transformation methodology described in the preceeding sections was

developed and exercised in conjunction with an extensive and non-trivial case

study LÖJ. The algorithm developed for that exercise is a possible model for

the behavior of the Ada selective wait statement, itself initially specified as

an Ada program consisting of a set of intercommunicating Ada server and

requestor tasKs. The transformation rules were only applied to a subset of the

program. Application of the rules resulted in two SLA programs whose behavior

was tested with the simulator NS1M.

Tne case study [6j provided a "real" example of rule-based transformations

whicn covers the significant portion of the Ada-to-Silicon "spectrum". No

theoretical stumbling blocKs were encountered in this process, which suggests

that there is nothing in principle to invalidate tne concept that such

transformations may be automated. On the other hand, we have not yet formalized

tnese transformation rules as concrete algorithms. There is the additional

cnallenge of reaching practical and competitive circuits with this approach.

w'c have experimented the intriguing concept of using Ada itself as an

intermediate language in the mapping process. For this purpose we have found

 --jja"&'1'

I

31

important ways to exploit Ada's abstraction features:

1. in mapping Ada program variables to instantiations of generic
packages to pre-defined IC modules.

2. In mapping Ada subprogram and task calls to specific hardware
protocols.

The end result of successful research in this area can be that the

traditional hardware logic design activity will become increasingly a

programming activity tnat is Keyed to the use of high-order programming

languages for system specification. Such an evolution will progress, however,

only as rapidly as we succeed in evolving a new class of high-quality compilers

for hardware.

— ••..
.-U-^-^JU—^«^it.i.f.-.„.„...-.-... --■■"■ ■■tfiiHiiiaiifiir

__

32

REFERENCES

1. Aho, A., and Ullman, J., Principles of Compiler Desi,gp, Addison-Wesley,
Reading, Mass., 1977.

2. Barnes, J., Programming in Ajg, Addison-Wesley Publishers Ltd., 53 Bedford
Square, London, WC1B 3DZ, International Computer Science Series, 19Ö2.

3. Carey, J. and Blood, B., "Macrocell Arrays-An Alternative to Custom LSI,"
ProegedinRS ^£mi-£U£l2nL InteRrsted Circuit Technology Symposium, Institute
for^ Defense Analysis, Science and Technology Division, May 1961, pp.

4.

5.

6.

7.

8.

9.

10,

Carter, I., "ASSASSIN: An Assembly, Specification and Analysis System for
Speed-independent Control Unit Design in Integrated Circuits Using Path
Programmable Logic (PPL)," Master's thesis. University of Utah Computer
Science Dept., June 1982.

U.S. Department of Defense, HUitarV Standard ADi Programming Language,
U.S. Department Of Defense, Washington D.C., 1980.

Drenan, L., "On Transforming Ada to Silicon," Master's thesis, university
of Utah Computer Science Dept,, August 19d2.

Greer, D., "An Associative Logic Matrix," IEEE Journal .Q£ Solid State
Circuits, Vol. SC-11, October 1976, pp. 679-691.

OrganicK, E., "Programmer's Introduction to Hardware Design", unpublished
course notes used at the University of Utah

Organick, E., " Semiannual Technical Report: Transformation of Ada
Programs into Silicon," Tech. report ÜTEC-82-020, University of Utah
Computer Science Dept., March 1962, DARPA Order No. 4305.

Organick, E. ; Boil, S. ; Davis, A.; Griss, M. ; Hayes, A.; Hollar, L.;
Huber, R.; Lindstrom, G.; Rushforth, C.| Smith, K. ; and Subrahmanyam, P.,
"Transformations of Ada Programs into Silicon : A Research Proposal to
Defense Advanced Research Projects Agency," University of Utah, March
1901.

11

12.

13.

Organick, £., and Lindstrom, G., "Mapping High-Order Language Units Into
VLSI Structures," Proc. COMPCON 82T IEEE, Feb. 1982, pp. 15-16.

Patil, S. and Welch, T., "A Programmable Logic Approach for VLSI,"
iEEETrans. Vol. C-2Ö, Sept 1979, pp. 594-601.

Patil, S., "On Testability of Digital Systems Designed with Storage/Logic
Arrays," lEEg International Conference fla Circuits aM Computers. 1980,
IEEE, New iork, 1980.

14. Patil, S., "Micro-control for Parallel Asynchronous Computers," 1975
Proceedings Euromicro, Euromicro, 1975, North-Holland Publishing Company.

^ Müh Httted^^H

Mpppmuppppr' i jumvimmmmtm

33

15.

16.

17.

16.

19.

20.

Patil, S., "An Asynchronous Logic Array," Tech. report IM-62. MIT Mav
1975, Project Mac. » » «jr

Seitz, C, "Ideas About Arbiters ," LAHgDA, Vol. 1, No. 1, First'Quarter
lyoo, pp. 10-14.

Smith, K. "Design of Integrated Circuits with Structured Logic Using the
Storage Logic Array (SLA) Definition and implemantation," PhD
dissertation. University of Utah, March 1982.

Smith, K.; Carter, T. ; and Carter, T., "Structured Logic Design of
Integrated Circuits Using the Storage/Logic Array (SLA)," IEEE
Transactions an. Electron Devices, Vol. ED-29, NO. k, April 1982. DD
765-776. » » w

Nelson, 3., MM liaflll'j Manual; Vniversity ZL IttaH VL^l Research Group,

Nelson, B. , ^i££ iLssc'i Haniial: University JSl iliaH SLS1 Research Group.

■

L

p*m*ammmmmm ■~. num K\mmmm

1

J

Ada Specifications for the DoD Internet Protocol:

The IN M _ 0 U T Submodule.

Report N o. 1

by

Gary Lindstrom. Elliott I. Organick,
Daniel Klass, and M ichael P. M aloney

i

Department of Computer Sdenoe

Univerisity of Utah

Salt Lake City. Utah 84112

■

November, 1982

This work was sponsored in part by the Defense Advanced Research Project Agency
(DA RPA) under contract number M DA 903-81-C-0414.

mmm
1 ' l"1 IUUWNIWHI1III1

Ada Specifications for the Dod biteniet Protocol:
The IN1I_ OUT Submodule Report No. 1 pace!

Table of Contents
Abstract
1. What is the Internet Protocol?

1.1. Protocol Hierarchies
12. The Role of the IP
13 ThcTCM 1NM Kclaüonship
1.4 ThcINH I.NM Kelauonship

8. A Closer Look at IP Functionaiity
2.1. TCH Inteiface
22. Datagram Formatting
2.3. The Internet Addressing Function
2.4. Fragmentation
2.5. Reassembly
2.6. Options
2.7. Internet Control Ueasage Protocol (ICMP)

3. Current Design
3.1. Uajor Design Decisions

4. Ada Specifications for INM _ OUT A Road Map
4.1. Communication between INM_ OUT and its "neighbor^ modules
4J3. Package and task structure of the coiresponding Ada code
4.3. Definition packages
4.4. Tasks defined within the In»" Out_ Module package
4.5. hnportant local procedures of Inm_ Out_ Module
4.6. Section summary

Appendix

2
3
3
4
5

10
10
12
12
13
13
15
15
16
17

I *» -*♦-./

I- C 0

Ada Specifications for the Dod btemetProtocob
The INM_ OUT Submodule Report No. 1 pagefi

Figure 1
Figure 2
Figure 2
Figure 4

Figure 4

Figure 4

List of Figures
Protocol layering.
Data enveloping.
Layout of sample datagram [51 p. 38.
S,0!?"1^000011 chaimeIs (tasking inteifaces) between
JWM_OUT and its "neighbor modules". Directed arc*
indicate direction of intertask requests (Ada entry calls). Arcs
composed of asterisks («) represent assumed communication
channels that are not now modeled in the Ada code.
Graph illustrating the dependence of the module packages
on certain auxiliaiy definition packages.
The three tasks embedded in Inm_ Out_ Module.

3
7
7

12

14

15

Ada Specifications for the Dod btemetProtocot
The INIi_ OUT Submodiüe Report.No. 1 pate 2

Abstract
This describes the status of the Internet Protocol (IP) example being pursued as a case study

by the Utah Ada to Silicon Project. This document provides three contributions: (1) A general
introduction to the Internet Protocol for those unfamiliar with it, (2) A discussion and "road
map" through the structure of the Ada code that spedfies the submodule representing IP,
which we have named INH_ OUT. and (3) A complete listing of the source Ada code for
INM_ OUT that is being used to guide the transformation of this submodule into silicon.
Parts 1 and 2 summarize the function of the IP and our major design decisions.

Other references [2, 3, 4] also include discussions of the IP case study and our approach to
mapping the IP into silicon. The source listings in part 3 have been compiled using the Intel
432 Ada compiler version available to us at this time. We have coded the nomplete
INM _ OUT submodule in Ada and have succeeded in compiling most of it for execution on the
Intel iAPX 432 system except for statements and declarations associated with uses of the Ada
rendezvous construct.

[As later versions of the Intel compiler become available, we expect not only ic be able to
compile the full module using rendezvous syntax and semantics, but to execute it in this mode
as well. In the meantime we are working with a version of the code, not given in this report,
that simulates each rendezvous via Send/Receive primitives instantiated through use of the
A da generic package mechanism.]

^ -*-'

898
11 in- ■ "I-1 immmmn^mmimtmmmp ii iianwauwi

me 1NM_ OUT Submodule ReportNo. 1
Pace3

1"ThhatiS the <enietProtocol'

*A*H SJZi Jrom JSÄiSSfÄR^t0 ptride a unlform »— «*
system of networks (or "nets"). WV^JSStVSS S aiJother' w,p ari interconnected
though such a net oould be woriiSri&I?J«ff 'ne ind vidual networks a "local net", even
these network» is called the^^^ii ^"C^n^ ^^ The ovcra,, «"«mbl^e of
more local nets are called "gateway" Catenet". Hosts directly interfacing to two or

The primary reference for the IP is fSl Onnf.H.»
exphat attribution are taken from tos refirena^ appeann8 in this document without

1.1. Protocol Hierarchies
It is important to understand the IP's nariMm i« n,

means at all to speak of a protocol hieraX pS T H ^J0^ h;erarehy. «" **" «» what It
for TWmisston Control Protocol [6] the most «mmL ^'^ ^^«y^n«- * here TCP stands
for local net protocol, which we leaie uSpSfiLihTro P ^ 0b0Ve ^ IP- and LNP ***

*--
1 Mgher-level l - -------
' TCP "!
♦ ! I:....::::::I
I LNP |
♦ -----------■__.

1tn« protocol |
■~~~~ +

Figure i-i: Protocol layering.

DerrrfTr,S Pe^SPeCtiVe• ^ ^ SeVeral **** 0f ^^ «* P™^ layering- 1. Modulaniy and intermediate Umguaaes- 0nP m«v • ^ L ^«""S-
conceptual (or real) framework fnr 7/ . ■ ay Vlew the h'erarchy as a
each ^rfor^ing a^^^r^Li^?^ ^implementation into ridt*»

Local Net Module (LNMX to refer to the sini™1 ^ ? ^ Module aNM)' and

implementing the)cP. /P. JAI££Z^£££ <***** or —Pt-D

at each level certain aspeks Xe cieraHIteZtw T^ abstracüon- That Is.
are solved, and rendered invisible^ MaÄ^0rk

1 "^munication problem
shall see that the IP Sb wj" |JLS St^^üt protoco^ ^ «ample, we

under theabstrection of esse;falÄStStaeLSi0 ** TCP <** function

3- Sfsr^Ä S'STSA t»^^ fr"-« -«■*
example, »eriitll see thi.t.nINM.^1,211, ■.n,lhe)' ""Plement For

4- ^'tSteÄ.s^4npÄ.''Lr,pffi^h,,d?" to^ '""»■• ■» -*«
CO^POP^ csa? 'Ärr '^jrsi.rsnSdS? ^

<i

^mmmmm mn^mimqmmiH

Ada Spfuririculions for the Dod Ihteniet Protocol:
The IN M ^ OUT Submodule Report No. 1 P«ige4

receiving modules communicate through parameters packed in the headers of
data passed to the next level.

1.2. The Role of the IP
The IP fundamentally provides a means of transmitting uninterpreted messages (segments)

between Hosts on possibly different local nets. The INMs accomplish this transmission by
packaging these segments in special data blocks termed datagrams, for transmission via one
or more local nets.

In performing its part of this internetwork service, the IP is concerned with two principal
duties;

1. Internet addressing: pidcing the desired "next hop" gateway for nonlocal
messages, and

2. Fragmentation and reassembly: splitting and merging messages that cannot be
transmitted intact due to inadequate local net packet sizes.

These duties can be explained metaphorically as follows. The IP functions like a
department-to-department mail service within an industrial organization. Each department
has a mail room, which deals with one or more courier services. W hen someone in a source
department has an item to send to another department, he or she wraps it in an unmarked
folder and deposits it in an out basket of the local mail room, with a delivery slip attached
giving instructions.

The mail room prepares the folder for transmittal by inserting it into a company mail
envelope, with the delivery instructions written on its exterior. It then selects a courier
serving the destination department's mail room, and gives the envelope to the service's agent.
The agent then puts the company mail envelope into one of the service's own standard
envelopes, and enters it into its shipping system. At the destination the process is reversed:
the courier agent strips off the courier service envelope and delivers it to the mail room, which
in turn recreates a delivery slip from the instructions on the company mail envelope, strips of
the company mail envelope and, puts the folder (with delivery slip attached) into one of the
department's in baskets. The in basket is selected according standing processing instructions,
based on the contents of delivery slips.

However, two complications may arise in accomplishing this folder transmittal:

1. The courier services available to the source mail room may not directly service
the destination department. In this case, the mail room determines a (remote)
courier service directly serving the destination, and looks the service's name up
in a renting table. This table gives the name of a department whose mail room
has agreed to transfer mail to the destination department, as well as the name of
a courier directly serving the transfer department. The source mail room then
gives its company mail envelope to the shared courier service, which conveys it to
the transfer department's mail room. The envelope is then relayed out via
another courier service, which the transfer mail room determines according to its
own routing table

2. The second difficulty may be that the given folder size exceeds the capacity of
largest envelope available from the selected courier service. In Urs case, the
mail room takes the liberty of partitioning the folder's contents so that each
portion will fit into a service envelope. However, before passing each portion to
the courier agent, it marks on the portion's company mail envelope that portion's
sequential position in the original folder. This permits the portions to be
reassembled into one folder in the destination mail room.

This thinly disguised analogy maps into the IP world as follows:

—A department is a Host, and a courier service is a local net

—A moü room is an IN M, and each courier agent is an LN M.

—A Jblder is a data segment for transmission over the catenet.

1,1111 I w i «"i « " I'

0Z8

Ada SpecifA-ations fur!he Dod friteroetProtocoL
The INM . OUT Submoduk: Report No. 1 pageS

—AnotU basket is a SEND ceill, and an tn basket is a RECV call. Delivery slips
are SEND/RECV call parameters.

-Each piece of company mail is a datagram if it contains a complete segment, and a
(datagram) fragment otherwise (For convenience, we consider unfragmented
datagrams to be "fragments" as well.)

— Transfer mml rooms are ge.teways.

—Finally, a courier mati envelopn is of course a local net packet.

(End of postal terminology, and resumption of Pcstel terminology.)

1.3.TheTCM INM Relationship
The manner by which the TCM communicates with the INM is not standardized. However,

the IP manual [5] illustrates one possible implementation through a pair of procedure calls
SEND and RECV.

Thesending TCM issues an INM call of the form

SEND(src dat..... BufPTR. len....)

when it wishes to send a segment to a destination Host. Parameters arc and dst give the
Internet addresses of the source Host (presumably itself) and destination Host, respectively.
Internet addresses are simply the concatenation of a net number and a Host number. The
segment to be transmitted is of length len (in 6-bit bytes, or "octets"), and may be found in
memory location BufPTR. (Omitted parameters will be discussed in section 2.1.)

If all goes well, this segment will be presented in due course to the TCM at the destination
Host. It takes delivery of the incoming segment by completing a mating RECV call on its
INM, which we assume was awaiting its arrival:

RECV (BufPTR arc. dat..... ten.._ X

where arc, dst, and len are value-returning ("OUT") parameters, and BufPTR provides a
pointer to a preallooated segment buffe- in the receiving TCM. Although dst is an OUT
parameter, we may assume that all segments delivered will have dst equal to the Host's
Internet address. Note that all through traffic at a gateway is handled by its INM without
involvement with the Host's higher level protocols (i.e. without TCM SEND/RECV
handling).

The TCM, for its part, implements several higher-level aspects of the internet
communication process:

—reliability (e.g. acknowledgements and retransmissions);

—error control at the segment level (i.e. checksumming TCP headers, etc);

—flow control (controlling the rate at which segments are delivered to the IN M);

—multiplexing (management of multi-purpose segments);

—connections (reserved portions of transmission capacity), and

— precedence and security (managing degrees of urgency and confidentiality of
segments).

1.4. The INM LNM R Nations hip
The interface between the INM and LNM is not specified in [5]. One may speculate,

however, that it could follow the general form of the SEND/RECV calls at the TCM-INM
interface.

That is. when an INM has a fragment to send out on a local net, it issues a SEND call in the
net's LNM as follows:

«w«111 — -I'l" I« ""■""' —"-^

i- z. o

«■»B^WIWIPÜ

Ada Specifications for the Dod bxtemel Protocot
The INH_ OUT Submodule Report No. 1 P"«e e

SEND(src- In. dit_ In. ..^ FBufPTR. Flen)

Parameters src. In and dst. In give the numbers of the sending and target Hosts on this net
Recall dst_ In will designate either this fragment's Internet destination Host, or the Host
serving as its next gateway. FBufPTR and Flen indicate the memory location and extent of
the fragment constructed by the IN M .

Delivery of local net packets by LNM s at target Hosts is accomplished by completion of an
INM call (which again we assume is waiting) of the form:

RECV(FBufPTR.src_ In. dst_ In. Flen),

where src^ In. dst_ In, and Flen are OUT parameters serving the obvious functions

It is useful to note the communication functions provided by LNM s:

—packet formation and transmission;

—local net status control,

—routing of packets within each local net.

2. A Closer Look at BP Fimctionality

2 1 TCU Interface
The full parameterization of the SEND/RECV calls at the TCM-INM interface is as

follows:
SEND(src. dst. prot, TOS. TTL. BufPTR. len. Id. DF. opt, OUT result)

—src. dst Internet source and destination addresses.
-prot the next level protocol in effect (e.g. attheTCM level). Several of these have

already been assigned (see [7]); TCP, for instance, has assigned number 6

-TOS: type of service (normal, high throughput, etc) requested by the TCM .

-TTL: time to live, a time (in seconds) after which the data^'am derived from this
segment can "self-destruct" if not delivered (see section 2.5).

-BufPTR, len: TCM segment pointers.
-Id: segment identification tag, for reassembling fragments derived from this

segment (see section 2.5).

—DF: a "don't fragment" switch.
-opt options to be observed in transmitting the segment (see section 2.6).

-result an OUT parameter in {OK. errorj; OK = "datagram sent ok"; p-ror =
"error in arguments, or local network error".

The corresponding RECV call issued by the TCM at the destination Host has a similar
parameterization:

R F f^VfRufPTR nrol_
OUT result OUT src. OUT dst OUT TOS. OUT len. OUT opt)

The purpose of these parameters should be evident from consideration of the corresponding
SEND parameters. Note, however. thhttwoareIN (read-only):

-BufPTR: a pointer to buffer preallocated by the TCM for receipt of the incoming
segment.

-prot an indication of which higher level protocol version this RECV call can
accommodate.

mmmmmmmmm imm

Ada Spec-ificuüons for the Dod bitemet Protocok
The IN1I_ OUT SubmoduJe Report No. 1

P««e7

2,2. Datagram Fonnattiiig
l^f-'SftufSS in Ü^W.M' a fruStfu, way of lookin« at P"310«51 teyering is to consider the Revels of envelope nesün« that surrounds the raw data transmitted. This is illustrated in S

+ _+
LNM parameters I local net header I """

INM parameters I IP header" "! " """ packet

TCM parameters l" "Jcrheäder I - fragment
+ . + segment
I data buffer I ■ v u u
+ __+ ______ v

Figure 2-1: Data enveloping.

fJÜÜT. r6 arD P011061"11«1 Pn^arily with the IP level, it is useful to look in more detail at the
rormat of an IP fragment (see fig. 2-2).

»is,
J^l 2 3 « S 6 7 B 9 0 1 2 3 < 5 67B90123«56T8901

IVtr. « IIHL. 8 I Typ« of S»-»lct| Tot«! Unith.'sTfi' ' ' i '
'"*~>'*"*">">"*-*-t—>—>-«-*-»-<-*-*-»-*-»-»-» i i
I IdtnUfloUion ■ 111 IFlt.OI Frafmnt Offitt ■ 0 I
f*"^r>"*'*rtr*"t"*~>">~*"*~>"*"*~*'*~t~*~* .«-♦-»->-» nud

IIM . 123 I h-otoeol > 6 | Itoidtr oh^eksta | i.-out
--»-<■«_»_»——f^-t-,-, ,,,,,.,,.,,, t i « in i I "''"'*■

■owe* addrau

| dtitlnttlon addrau ,

I Opt. Cod« • i | Opt. UB.I 3 | option v.lue | Opt. Cod« ill •

I Opt. Un. ■ « | option vilu« | Cpt. Cod« « 1 I words
♦'♦-♦-♦-♦-♦-♦-»-♦•♦-♦-♦-'-♦■«-'-■-■———^—-^-t-t-t-i i i >., i ,

I Opt. Cod« . y | Opt. Un.a 3 | option value | Opt. Cod« > 0 I v
♦—t-»-*-*-*-«^ ■ ■ i-^.—,._f-,-, , |

1 data

\ J
. \ on« or «or«
! *•*■ I ootata
■ ■• ' ■ • ■ t t i i i i i i i i i i

1 dat* I *
 .i.... -iii , , _^___

Many of these fields are directly transferred from corresponding SEND parameters
However, a few bear darificaüon: re, ^ incwaa.

-Vert version of the IP header layout.

-IHL: total header length, in multiples of 4 octets (32 bit words).
-TuyPTJ

0u 8er¥ice: a one-octet encoding of the type of service which the datagram
should be given en route to its destination. (This encoding is act to be mapped to
other representations as the datagram moves first *.o the local net level and then
to other networks en route to the destinatin network.)

-Total length: total length of the datagram, in octets.

-Fig: three bits bo^bj». where bu must be zero. b,= 1 iff the datagram should not be
fragmented, and bjs 1 iff this fragment is not the final one of its datagram.

-Fragment Offset gives the position of this fragment's message data within its
original segment, in units of 8 octets (64 bits). The first fragment of a datagram
has offset zero. ■

"■s^ * ' H^i' *!.' '"

mmmm

~**~*mmmmi* 1 ' ""■,

t, L O

wmmmm

Ada Specifications for the Dod Internet Protocot
The INM_ OUT Submodule Report No. 1 page e

—Header checksum: from [5], p. 14:

"The checksum field is the 16 bit one's complement of the one's complement sum of all 18
bit words in the header. For purposes of computing the checksum, the value of
the checksum field is zero."

2.3. The Internet Addressing Function
rntemet addresses actually have three formats, providing for a few nets with relatively

many Hosts, and many nets with relatively few Hosts. These formats are:

-Class A: a lead 0. followed by a 7-bit net name, followed by a 21-bit Host name.

-Ciass B: a lead 10. followed by a 14-bit net name, followed by a 16-bit Host name

-Class C: a lead 110. followed by a 21-bit net name, followed by an 8-bit Host
name.

Several Class A network names have already been assigned [7].

As menüoned in section 1.2, the INM addressing function deals only with outgoing
datagrams, and amounts to picking the target Host on the next local net. This will involve use
of:

1. A gateway table, which will need to be updated periodically to reflect long term
additions and deletions of nets to the Internet system, as well as shorter term
changes in gateway availabilities.

2. Use of specific routing instructions, as given in the datagram options (see section
2.6).

2.4. Fragmentation
Fragmentation occurs on outgoing datagrams which will not fit into a single local net

padcet. Note that fragment headers can be constructed without examination of the data
segment to be transmitted. This means that a buffer the size of a local net packet could suffice
for fragmentation if space is at a premium. The IP specification [5] gives an example
fragmentation procedure (p. 26).

2.5. Reassembly
The IP specification also gives an illustrative reassembly algorithm (p. 28).

from our perspective are the following:
The key paints

-Reassembly is done only at Internet destinations, and not at gateways or other
intermediate Hosts (since we cannot be sure all fragments derived from a given
datagram will follow the same routing).

-Datagram fragments are reunited on the basis of a key formed from four fields of
the fragment headers: source, destination, protocol, and identification. Sending
TCMs must choose identification fields such that this 4-tuple is unique
throughout the Internet system for the lifetime of a datagram.

-Strangely enough, fragment headers do not include the overall size of a
(reassembled) datagram. Hence preallocation of a complete buffer for each
incoming datagram is not generally feasible, unless either a small limit is imposed
on incoming datagram size, or the datagram arrival rate is assumed to be low.

-Various anomalies can occur in the arrival of fragments, e.g. duplications,
reorderings. and omissions. The INM is free to handle these however it wishes
except that fragments with headers that fail the checksum test must be destroyed'
Fragments are "aged" by decrementing their TTL field as they pass through the
Internet system. Each INM handling a fragment charges its processing time, with
a minimum of one (second) each. Presumably, the TTL for a datagram under
reassembly is the minimum of the TTLs for its delivered fragments W hen this
TTL reaches zero, the partially formed datagram is destroyed, and the buffer is

"IW" .Liimii. ■ j.inii^Kppvp^^ijijiijiiiuiiui ajiaiui «■pmwu^Hi

/ VZ.H

Ada SpecifkatioDs for the Dod fatemet Protocot
The IN M _ OUT Submodule Report No. 1

released.

page«

2.6. Options
0 ptiuns indicate special handling for datagrams, as requested by the sending TCU. The use

of options is optional, but their implementation is mandatory.

The essential options are summarized below, omitting "null-options" such as no-ops,
padding, etc A n asterisk indicates that the option is copied in every derived fragment.

— •Security: for sending "security, oompartmentalization, handling restrictions, and
TCC (closeduser group) parameters".

— *Loose Source and Record Route (LSRR): for specifying a series of internet
addresses through which a datagram is to be routed. The routine is loose because
"the gateway or Host IP is allowed to use any route of any number of other
intermediate gateways to reach the next address in the route". The route is
recorded in the sense that a pointer packaged as part of the option is advanced as
each intermediate address is reached.

-♦Strict Source and Record Route (SSRR> similar to LSRR, except that "the
gateway or Host IP must send the datagram directly to the next address in the
source route through only the directly connected network indicated in the next
address to rsach the next gateway or Host specified in the route."

— Record Route* requires each INM handling the fragment to concatenate its
address into the space allocated for this option (if sufficient space remains).

— •Stream Identifier, "provides a way for the 16-bit SATNET stream identifier to
be carried through networks that do not support the stream concept."

—Internet TLmestamp: indicates that each INM handling the fragment should
concatenate its time of receipt (in milliseconds since midnight UT) into the space
allocated for this option.

2.7. Mtemet Control Message Protocol (ICMP)
The INM must implement special protocol that is companion to the IP for reporting errors in

datagram transmission and requesting special INM services. This protocol, termed the ICHP
[6], is mandated as follows:

"ICM P uses the basic support of IP as if it were a higher level protocol, however, ICM P is
actually an integral part of IP, and must be implemented in every IP module."

ICMP datagrams may be recognized by INMs through the special prol= 1 header
indication. For obvious reasons, ICM P datagrams are not sent regarding errors in delivering
ICM P datagrams. Briefly, their varieties are as follows:

1. Destination unreachable: a receiving gateway could not transfer a datagram,
or a don't fragment request could not be honored.

2. Time exceeded: a first fragmant, or unfragmented datagram, was
superannuated.

3. Parameter problem: a datagram header was found to be malformed.

4. Source quench: a destination Host requests a slower rate of transmission from a
source Host.

5. Redirect a gateway advises a Host not to route traffic to a particular distant net
through it.

6. Echo or echo reply: used to "reflect" datagrams bade from destinations to
sources, for testing purposes.

7. Timestamp or timeatamp reply: similar to echo and e-'.io reply, but with a
destination timestamp.

8. Information or information reply: used for querying "what network is this?".

- iiimilin

r vwy '■ '" I"'»"'-" «W-PI >i>m< mmi m mu inu w •••^«^^H^nHnnMPBM^^mn ■mpi^pwiii

Ada Spccificulions Tor the Dod Inteniet Protocol:
The IN M _ OUT Submodule Report No. 1 page 10

3. Current Design
W e summarize here the principal features of the AtoS approach to implementing the INM,

as well as remarks on the current status of that implementation.

3.1. Major Design Decisions
There have been two major design decisions thus far.

1. The first is to split the INM into three submodules: an INM_ OUT dealing with
traffic outbound on a given local net, an INM_ IN similarly handling inbound
traffic and an INM_ SRV tying them together and interfacing to the Host(s).
W e envision one INM _ IN and INM _ 0UT pair for each local net interface, but
only one INM _ SRV per INM .

2. The second decision is to use a two-phase Ada rendezvous to implement both the
upper (TCM) and lower level (LNM) interfaces. In each case, a task call is
performed by the initiator of the data transfer action, with the receiver servicing
the transfer through an appropriate entry. W hen the data transferred has been
fully processed, a reciprocal rendezvous takes place (with call and entry roles
reversed) to report the success or failure of that processing. [An alternative
formulation, based on passing messages via ports such as is done in the 1432
architecture, is also under consideration.]

Division of functional responsibilities:

1. INM_SRV:

a. Receive segments from and deliver segments to TCMs in the Host(s)
sensed.

b. Accept incoming segments from the INM _ INs, and

i. deliver via local Host RECV calls all segments so addressed, and

ii. (if implementing a geteway) route to appropriate INM_ OUTs all
through traffic

c. Maintain a gateway transfer table, used to route all outbound segments
(whether from a local Host or neighboring INM_ IN). If an outbound
segment has a non-local net name in its destination address, that net
name is used as a key to select the appropriate next gateway directly
reachable by a local net served.

d. Implement ICM P message generation and transfer.

e. Handle options:

i. Security: reject all classified traffic, perhaps with an ICMP report
of "destination unreachable".

ii. LSRR, 5SRR, and record route.

iii. Timestamping: (i.ote this requires e time of day service,
presumably from the TCM).

[Note that all message traffic through the INM_SRV is in segment form;
datagram (or fragment) form is used solely within INM_ IN and INM_ OUT
submodules.]

2. INM_0UT:

a. Form fragments from segments received from INM _ SRV.

b. Deliver fragment', to the LNM _ OUT of its assigned local net, along with
their local net addresses (final or gateway), as provided by INM _ SRV.

c. Map the Internet type of service parameter to an appropriate local net
type of service, or reject fragment if this is not possible.

3. INM_IN:

a. Receive fragments from the LN M _ IN of its assigned local net.

mmm -•■'■' wmmmmmrr-

'

t

Ada Specifications for the Dod bteiuet Protocot
The 1NH_ OUT Snbmodule Report No. 1

page 11

b. Rearaemble fragments into complete datagrams (destination fragments

c Delete overage and erroneous fragments (note this requires a timing pulse
at least once each second). y^^

wm1 mm —■"■■'■-

i. Z. 0

Ada Specificationa for the Dod Internet I'm loco I.
The IN M _ OUT Submodule Report No. 1 page 12

4. Ada Specifications forlNM- OUT A Road Hap
The INM _ OUT module, whose functionality is described in the preceding section, has been

specified in full in Ada code. The purpose of this section is to review the structural
organization of this code as a set of interrelated A da packages, embedded tasks, and auxiliary
procedures. The code itself is listed in the Appendix as a series of 14 separate oompilation
units.

I

4.1. CommunicaUon between INM_ OUT and its "neighbor" modules
To better understand the code organization, it is useful first to visualize the communication

channels that are assumed to exist between INM _ OUT and other modules [l]. These
channels suggest the important intertask communication of the Ada code to be described.
Recognition of these channels determines the gross organization of the code that embodies this
modular organization. Figure 4-1 shows the channels not only between INM_ OUT and its
"neighbors", but also identifies two other important channels that are assumed to exist; the
latter, however, are not detailed within the code to be described.

I
INM_S;W !<• '>! MEMORY

FIFO

V •

1 1
LNM_OUT |

Figure 4-1: Communication channels (tasking interfaces) between INM _ OUT
and its "neighbor modules". Directed arcs indicate direction

o* intertask requests (Ada entry calls). Arcs composed of
asterisks (•) represent assumed communication channels that

are not now modeled in the Ada code.

Discussion in the preceding section has already explained the role of the INH_ SRV and
LNM_OUT modules. The module marked "MEMORY" is, depending on the specific
implementation, either a memory to which INM _ SRV and INM _ OUT have shared access or
a control unit that governs access to some such memory unit. The module marked FIFO is
assumed to be a hardware unit functioning as a first-in-first-out queue. Outbound datagram
fragment are passed through the FIFO module to LNM _ OUT. The FIFO must be capable of

(

1

—T— '—— '■■■-■

U I. u

1

p
Ada Specifications for the Dod btemet Protocok
The IN1I_ OUT Submodule Report No. 1 page 13

holding at least one (maximum-sized) datagram fragment. The module is assumed to operate

T^ UTTW* in Figure 4"1 indi«te direcüon of intermodule requests, whidi are
Solnd and'ou^un^f ^.^ Ada ^ entry ^ <*" sPecify ^nsmi^ion oTbJS «SS^lfS 0^bou.nd »^rmaUon Completion of the rendezvous initiated by an Ada task
torn tS rX ^i^ have the effect of both sending data to the callee and Veoeivin^ Sa
DX Jh^ln% ^ th0UÄrh SUCh a "transac"on" may always be initiated by a partS

St^%Tngre) Jur^uTt)0™811011 ^ ^ Chaimel Can ^ * ™ 0r b0th ^ions^

wellhS' to ?IF0 "«L^u^M^pv18 n^ INM - SRV and issues re{'uests t0 LNM- OUT as
^f«rm!fS« JJ2 1 0 "EM0,RY- Depending on the nature of these requests, message
Z^äinn£r^tt"!iOOrIrOinlNIi-0UT- ^ both directions. T^ese details a^

Requests from INM_ SRV to INM_ OUT are of two kinds:

^Sfn^M for
A

the Purple of providing INM _ OUT with initialization
information An initialization request is a message that supplies INM_ OUT
valued ^ e and acquire' via MEMORY, the actual initialization

2Ü^n!S that. ^u^.^nsmission of datagrams. A transmission request
UF^nv ^^ ^h\Ch INM-0UT O» use to locate and acquirT via
u t M u K r, the actual datagram prepared (or transshipped) by IN M _ SRV.

A message request from INM _ OUT to MEMORY may either supply MEMORY with a
pointer value or receive from MEMORY a data value. uppiy MCM uni wiui a

nni ^N^m^^11^ ^ by,l^-0^^ the form of a message request to the FIFO
unit. INM _ OUT uses the channel to LNM _ OUT to issue requests for confirmation that the

indmM8 mrr'S a da^ra^ vi,a the FIF0- In a like manner-the SSSTSHTS^
?nd_ANB-.0UT 1S used by the former to obtain confirmation that the latter has correctly
processed the preceding request. ■»•««/

IN^S^V^n^f611 wMruSRV and MEM0RY. *hile important to the operation of INM_ SRV. are not relevant to the current discussion. K= uu «

4 ?' ^C!f¥e Imd task structure 0' the coircsponding Ada code
« ™^fnt fKCOde,each ?f the T100"168 discussed in connection with Figure 4-1 is modelled by
a package, the pnncipal one for our purposes being the package for INM OUT which is
rnm 0 Ä-J ^ir ^ BSih the sPe°««tion part" and the "boSy ^art o!
i^^l r ,haVe *?*. 00ded- By 00ntrasl' " is on,y necessary for our purjos«. to
ÄÄSfi^"1 ^ f0r the LNM- 0UT' FIF0' and «EMORY modules si^tnly
AM P

TRV i^»1? areneleVfnTV.ri iheJ^n of INM - 0ÜT- By ■tail«' reasoning, sin«
IL »K ^u« entry calls into INM _ OUT and not vice versa, it is unnecessary to insider
K« «V^Sl^S ^ 0f iNM- SRV: for this reason, there is no package reprSTtS INM_ SRV in the code section displayed in this report. K B P «euung

4.3. Definition packages
The full Ada code for INM_ OUT. in the form of an Ada package, has been deliberatelv

f^Ta We'ra^v oflh^"^6 i^ÜS? ^^ 0Ut: the^actofed fnfoTationÄS^
ZZ^J *%!*?*** ^ tauxil,ary) definition packages. These packages contain type
LÄ«n fe afd !Ubl/Pe dflarati°ns and their corresponding representation dauses ^
any) as well as constant information (constant declarations); these declarations are exoected to

In OutP«S, ßn f
SOmKet,me ^u1116 future- Thu3' the "root" definition Pa~kage is named

in- Out_ Srv_ Defs. because the contained declarative information is common to all three

 • -

mm. —

BL8
^

Ada Specifications for the Dod fatemetProtocok
The INM_ OUT Submodulc Report No. 1

>

page 14

parts of the Internet Module; the subsidiary package Inm_ In_ Out_ Defs contains
dedarative information common to both INM_IN and INM_OUT and depends on the
declarative information in In_ Out-Srv_ Defs. Finally, the definition package named
Inm_ Out„ Defs contains declarative information of relevance only to INM _ OUT and to the
modules (LNM_ OUT, MEMORY, and FIFO) to which it makes requests for service. Figure
4-ß shows the full dependency graph that has resulted from this decision to factor out common
dedarative information. The graph also reveals that the packages representing MEMORY,
FIFO, and LNM _ OUT modules have also been spedfied to depend on certain of the definition
packages.

I In_Out_Srv_Defs I

I I
I Inni_In_Out_Def s I
I I

 I
I

I I
I Inm..Out_Defs I

I I

I I
I Memory_Modu1e I
I I

Flfo_Module

I Local_Net_ I
I Module I

I I

II II
I I Inm_Out_Module I I
II II

Figure 4-2: Graph illustrating the dependence of the module packages on
certain auxiliary definition packages.

I

-—'

088
1

Ada .Specificulions for the Dod bitemet Protocol:
The INM _ OUT Submodule Report No. 1 pate IS

4.4. Tasks defined within the Tnm Out. Module package
Three tasks are declared vr ithin the Imii_ Out_ M odule package.

1. The main task, named Inm_ Out, interfaces with INM_ SRV and with
LNM _ OUT such that a pipeline effect is achieved for speeding datagrams along
the outbound data path: Host module —> INM_ SRV —> INH_ OUT —>
LNM.OUT.

2. An auxiliary (server) task, named Read- Init_ Parameters, which obtains from
host-related memory the initial parameter values needed to perform datagram
transmission.

3. An auxiliary task named Translate- TOS- Task, which operates in parallel with
INH_OUT, the main task, by translating type-of-servioe information from
hostHevel to local-net level encoding.

The specifications for these three tasks are found in the specification part of
Inm- Out- Module. The body parts of these three tasks are represented as stubs in the body
part of Inm_ Out- Module and the actual body parts of these tasks are listed in separate
compilation units. (See Figure 4--Q.)

Inm_Out_Modu1e

InnuOut

:

:

The ma In task |
i

F.ead_I n tt_ Parameters

1 Aux 11 1 ary task 1
1

Transla te_ TOS. .Task

1 Aux n i ary task I
i

Figure 4-3: The three tasks embedded in Inm- Out. Module.

i
i

4.5. Important local procedures nf Tnm OuL_ Module
Adlivity initiated within the main task (Inm- Out) is delegated in two ways: (a) by entry

calls to Read- Init_ Parameters, and (b) by calls to one "principal" procedure defined in the
body part of the containing package (Inm_ Out_ M odule). This procedure is: Do-send, Trhich
in turn issues calls on other three others procedures, locally define (in Do- send. These are.
Read, in- header. Compact- Options and Send- fragment. The respective purpose of each of
these principal and subsidiary procedures is spelled out in the commentary of their respective
specification parts which are found in the spedfioation part of Do_ send. The body parts of
these procedures are represented as stubs in the body part of Do_ send and appear as separate
compilations units in the listed code.

 m tM

tmf^mmmmmmiivmmwwm wm-mm

IBB

ll1" ,l

Ada Speciflcations for the Dod faiteroet Protocol:
The IN M _ OUT Submodule Report No. 1 page 16

4.6. Section summary
This ends our short description, or "road map" through the code proper. There are 14

separate compilation units given in the Appendix. These are:

1. In_0ut_Srv._Def8
2. Inm_In_0ut_Def8
3. InmJDutJDefs

4. Menioru_Modu!e
5. Fifo_nodule
B. Local_Net_f1odule

7. Inin_0utJ1odule

8. IntnJDut

9. RBad_Ini t_Paraineter8

18. Translate.TOS.Task

11. Do_Bend

12. Read_m..header

13. Compact_option8

14. Send_fragment

— Top-level definition package.
— Second-level definition package.
— Second-level definition package.

— Auxiliary module package.
— Auxiliary module package.
— Auxiliary module package.

— The main package.

— The main taek.

— Auxiliary task used by the
main task, InmJDut.

— Auxiliary task used by the
procedure Read_in_headBr.

— Procedure local to Inm_Out_Hodule
called by InmJDut.

— Procedure local to Inm_Out_Hodule.
called by Do_send.

— Procedure local to InmJDutJIodule
called by Do_send.

— Procedure local to InmJDutJIodule
called by Do_send.

,1

n^> ■!■.,» -i-mu •mmmm^mmmmmm 1
Ctiti

t

j

I

Ada Specifications for the Dod bitemet Protocol:
The INM_ OUT Submodule Report No. 1

Appendix

P««el7

flda-to-SM icon Project _I
Unlvtrilt« of Utahl _I

OoO Internat Protocol INfl.OUT aubaodMl« ZZ

fld« coda for tha top-laval dafinltion packaga naaadt 11
In_ 0 ut_ Srr- D efa

Varaion of Novaabar 1, 1982 _I

package In_0ut_Srv_0afa la

— Functions

" INfl'sRVClo2urnnt*ln' d',,nit'on, n,,d«d b« th« INH.IN, INfl.OUT, and

-- Uaaful bit-flaid typaa.

subtype b i 11
■ubtype blt3
subtype bIt 4
subtype blt8
subtype bl tl3
subtype bi tlB
»ubtype bi t21
subtype bl t24
subtype bl t32

■hlftit
shift3:
■hift4i
shlftSi
«hlft6t
• hi ftSt
ahlftl3>
ahlftl6t

»ubtype octot_
type oc ta t.buf

Tha fo I louIng c
Mork. NoraalIy
laaa than or aq
So, norms I ly co
intagar would b
Into a tingle a
problaa.

ia
irj
im
im
im
im
im
im
im

I n tagar
i n tagar
I n tagar
intagar
1ntagar
1ntagar
Intagar
intagar
intagar

raufe S..1;
Tange 8. . 7 ;

range 0..15;
range 0..255)
range 8..8191;
range 8..655S5;
range 8..28971S1;
range 9..16777215;
range 8..4294967295;

constant
constant
constant
constant
constant
constant
constant > ■
constant i =

s ■
; ■

I B
: =

2;
8;
16,
32,
64,
256,
8192,
65536;

<ypa is bl t8,

♦•r_typa is arrayC I n tagar range <» of oc ta t_typa ,

oda had baan addad to saica tha unchackad convarsloi. routinaa
tha default storage (In tha 1432) for integer, that «ra

uai to 16 bita la a ahort ordinal (16 bit fiald).
nvarting a raeord of 2 bits intagara to a bitl6
a equivalent to trying to atuff 2 ahort ordinals
hort ordinal. Tha rapraaantatIon specifications fix thia

— Rapraaantation apacIfleatlona aaction.

byte t constant intagar i= 8,

for bltl'a Iza
for bltS'alza
for blt4'alza
for bltS'alza
for bltl3'alza
for bltlS'alza
for bi t21,alza
for bIt24,a iza
for blt32,alza

end ln_Out_Srv_Dafa,

use »1
use 3,
use 4>
use labyta.
use labyta + 5;
use 2abyta,
use 2abyta + 5,
use Sabyta,
use ♦»byte;

•UM

i uii,. ui im« .1«..»-...... , 11*1«

^aCSBftSSÄ-^SÄ^^ .

Pa^e 18

«d.-to-Slllcon Proj.ct
Univ.p.ity of Utah:

DoO Int.rn., Proloco(INn_0ÜT „^^^

"" """ KüMä:
~ !!r!lon o, Nov,"b«'> i, 1882
with Ir._Out_Srv_0«f«',

«■e In_Out_Srv_0«f«,

packoce In»_In_Out_D.f, i,

— Funcflom

r**.'idHwu.on: VH^V.:::]:'.:' d'nn,<"' - *« bc,

1Nn di,i "" "—'c.«(0„M(th..Pv.r

■•«_„,„„,_,, coMtant .= 64,

:::2:::t^^^';y;,v-•.■.■;, S:: 2'"'""'" ~' • i --"vrmir.t constant i = ■»» I...J

-P » lnt.,.r ranÄe h..d.r_bUf,.r.l0M_,d(,r,>i

„.. h"d,r-bu"--hl9h_.ddr...;
•ubtyp<.h..d.r_oct.t_büff.r_,Up, '

» ««•«-bu«f.r_typ.(h..d,r ptp)

»ubtrpe h..d.r_|,ngth ,

record
lo: OCt«f_typ,)

hl« OCt.t_lyp,,
end record;

^pe h.id.r.buH.r typ, i-
record

vtrtlon«
IHLi
ttfP«_Of_i«PV|c,I
tOt«|_|,ngthl

"•ntlf leatlom
■ lags:

«ragaant.offtati
^■•-»o.l Ivas
protocoIi
haadar_chaclt«u«i
«>ctat_buf fan

end record)

• IN" dat. for co-.unlcat.on „Ith LNn

bit4|
bi t4,
bltS|
tMo.octat.racord;
t«o_octat_pacordj
blt3, '
bltlS|
bit8,
bits,
«Mo_octat_racord,
octet buffar «nn.rii

'- «ourca.addraaa. bit32.
" — tln.tlon_.ddra.., i,,«

♦Ir.t.chackaun bytat
..eond_chaeK.uii_byt.: constant i = i$f

constant » = 11,

•^^—.

—"""'

V o o
1

Ada SpcjciTicationa for the Dod Internet Protocol.
The INM _ OUT Submodule Report No. 1 page 19

»i»x_l n«i_par ke t : constant i = 12S ■ Octat« (arb i trary).
-- 7???777?? E.I.O. 676777

»ubtjpe haadar.Morda ia intagar range 5 .. I6j — Haadar i.ngth In uerda.
■ublype haadar.octata ia Intagar range 2 6 .. 64) — Haadar langth In uorda.

— Functional

function * x o r * (
fIrat.oparandt oct«t_type;
aacond_oparandi aetat_typa)

return octat.typa)

function * x o r ' (
oparandlt tHO_octat.rarord;
oparand2: tHO_CCtat_racord)

return tHo_octat.racord;

function flask (
nu«bar_to_ba_«aal(ad_for»al: intagar;
»ask_tor««l: Intagar)

return Intagar;

-- FunctI onj
Performs a bit Mica UND oparatlon on
tha two paatad paraaatara and returna tha Intagar rasult.

function Sh i f i _r I gh t (
nuaiar_to_ba_8hI<tad: intagar;
ahift.dlatanca: intagar range 1

return intagar;
15)

— Function! Does equivalent of Intagar divide of nunbar_to_ba_ahif tad
— by 2 •• fhift_diatanca raturning tha aquivalant of tha quotient
— on unsigned (potltlva) integers.

— Representation apac.ficatIona aactlon.

for trfo_octat_racord use
record

lo at 0 range 0 .. 7;
hi at 1 range 8 .. 7;

end record;

end In»_ln_0ut_0afa

package body In_Out_Dafa ia

function * x o r " (
f i rat_opar*ndi b i t8;
sacond.oparundi bitS)

return b i 18

-- Function:
Returns tha Exclusive OR of tuo octets.
Tha following lap laaantat ion aarvaa aa « aoftuara gulda only.

ia
result, savaa, aavabt bitS;
«blt, bbi tt bi t8;

begin
aavaa «= fIrat_oparand|
■avab i= aacond_oparand;
raauIt l ■ 0;

for indax in 0 .. 7
loop

Initialisation.

CJI'tJ""1 '" <•

■--A-

mmmmm mm mmmnwMn < HIN

Ada Specifications for the Dod Fateniet Protocol:
The IN M. _ OUT Siibmodule Report No. 1 page 20

• bit s= savta rcmtbiftl;

bblt !■ savtb remahlftl;

■•va« !■ Shlf t.right davaa, 1);

■ avab i= Shlf t.rlght (aavab, 1)|

if not abl t = bblt then

result i= result 4- ahlftl •• Indax;

end loop;
return rasu 11;

end;

- Cat tha least
- al gni fleant bit.
- Cat tha laaat
- s 1 gn i fI can t bit.
- Str Ip off tha least
- aignlfleant bit.
- Strip off tha laaat
> algnlfleant bit.

Add tha currant xor bit«
- to tha raau I t.

function "xor' <
oparandli tuo_octat_racord;
oparandlt tuo_octat_r*cord)

return tuo_oetat_racord

-- FunctI on»
Forms tha exclusive OR for corresponding octets of two
two...oc te t „operands . Uses abova declared 'xor* function.
I hopa thla la lagal Rda. (G<-y> Ptaaaa chack). Ha uaa
thla function when performing ehecKsumming on tha full 16-blt
checksums which ara rapraaantad aa tuo_oetat_racorda.

im
raauld: tUJ_OCtat_raeord;

begin
reau I t
raau I t
return

end;

.lo 1 = oparandl.lo xor oparand2. I o;

.hi := oparandl.hl zor oparand2.hi ;
rasuIt1

*

function flask (
nuabvr _to_ba_naEkad_foraaI 1 integer;
aaak .foraal: integer)

return Intagar

he fallowing implementation sarvas as a software gulda only.

is
first .number t Intagar;
second_number s Intagar;
risuIt > Intagar;
Indax : Intagar;
Basklng_dona : boolaan;

begin
— In 11la Iiza variablas.

flrs:_nuabar 1= nuabar_to_aask_forn«I;
aacond_nu«bar t= aask.foraal;
rasu It i=0;
Indax t = 8;
aaaklng_dona i= falsa;

— Do a bit by bit AND of both nunbarc atartlng fro» tha
-- low ordar bit.

while not aaak lng_dona
loop

— Test to saa If both low ordar bits.

If (llrst.nuabar rem 2) = i and (saeond_nuabar rcm 2) ■ 1 then

-- Rdd tha currant bit Into tha rasult.
rasult 1= rasult +2 •• Indax;

end if;

J

WHf wm'mmmmmmr'mmm ■■■IP^ww—«« "i "■II".LJ|I|I|I!"W«P»^W^IM MI IIIJUI»

Ada Specifications for the Dod btemet Protocol:
The IN M _ 0 UT Submodule Report. No. 1 page 21

— Take off the low order bit fron both numbers.

firtt.nuabor !■ ShIft_right(fInt.nuabar, 1);
■tcond_nunb«r t= ShIft_rIght(iteond.nuabart 2)|

-- If either nunbtr I« xero then urn «re don«.

if (f I rst_nuBb*r = 8) or (toeond.nuBbar ■ 8) then
■•■kIng_don* t= true;

else— Incroaent index
I ndex I = Index 4- 1;

end if;
end loop;

return result;
end «ask;

-

function Sh I f t_r Ight (
number_to_be_shi Had : integer;

shift.distance) Integer range 1 . . 15)
return t n t a g a r

Tha folloHlng iapIaaantatI on serves as a softuara guide only.
im
b^gin

return nunh«r_to_be_shift ad / shIft_dIstanea;
end Shift_right;

end ln_0ut_0afs;

■—^ i —

mmmmmm*>~~m tmmmmmm mmmmmmmmmmmmmm^mm

LtiV

Ada Specifications for the Dod htemet Protocol:
The IN1I_ OUT Submoduk- keporlNo. 1 page 22

nda-to-SI I icon Projact
Univ.rsity of Utah:

DoD Intorn«t Protocol INI1_0UT subBodul*

nda coda fop tha IntaraadIata-lava I daflnltlon packaga nanadi
Inm-Out_Oefa

Varalon of Novanbar 1, 1982

with In_Out_Srv_Dafa, In»_In_0ut_0afai

uae In_Out_Srv_Dafa, InB_In_0ut_Dafa >

package Ina_Out_Dafa is

-- Func t Ioni
Thla packaga contain« dafinitlon« used in thr INH.OUT Moduli
and tha units to which It Intarfacaa.

Block Diagram of Anticipated Hardware Realization

I I
I INM_SRV !<•

R

A

X + l

8

8

A

R

■>l MEMORY
I

v I

FIFO

Rl Al
I v

LN INTERFACE

— Conatantat -
•ax toa_table_«Iza« conrtant I ^tagar i= ♦ In octata.

.-'

c

k ^

' u"""

1

.

BBS

Ada Specifications for the Dod Mteniet ProtocoL
The INM_ OUT Submodule Report.No. 1 page 23

— Pctual sizi dupendt on
— available space In th»
— hardware representation.

■ax_local_net_tos_byte_sIze: conrtant Integer >= 2;
-- flax number of octets raqulrad
— to represent the local net TOS.
-~ He assume that 16 blta la aore
-- than sufficient to ancoda th«
-- I oca I na t toa.
-- (Still not aura we naad
— thla conatant. E.I.0.)

convtanl Intagjr >= 8;
constant Intagar := 1;

aarIy_tctt
I a t a _a c k i

seqmenf.lOH.address:
aagiiant_hlgh_addraaat

constant t = 6;
constant i= aax.aagmant_langth - 1;

— Typaa uaad for Intartaak coaaunleat Iont

xt constant Intagar i= 4| — Data path uldthst chunk of addrasa.
— SRV -> OUT and OUT -> HEnORY.

— Coaaunlcation between tha
— INtl.OUT and riEtlORY aodulaa.

subtype chunk_of_addrB88_typa is Intagar range 6 .. 2 •• x - It
— Piaca of start addraaa for a datagram.
— Each placa has x blta.

tjpe aaaory_raquast_typa ia(
Ioad_addrass,
racsiva_datua_octat))

-- Communication between
-- INH.SRV and INI1_0UT aodulas.

type srv_connand ist
Init_l,
Inlt_2,
Inlt_3,
Inlt_4,
Inlt_5,
Ini t_6
lnlt_7,
sand,
fast)|

— Not currantly usad.
— Not currantly usad.
— Not currantly uaad.

y: constant Intagar t= 4) — Odta path width:
— OUT -> SRV.

type out_response ia(
sant_ok,
dont_frBgBant_arror,
unsupportad_toa,
bad_haadar,
bad_arv_coaaand,
local_nat_tlaa.out,
I oca I_nat_Brror,
othsr) |

— CoaaunicatIon aaong tha
— INn.OUT, LNtl.OUT and FIFO aodulas.

st constant « = 4| --Data path width: OUT -> LN.

type local_nBt_coaaand_typa is(racaIva_fragaant)t — Currantly a sat of ena.

ti constant i = 4; — Oat a path uidthi In -> out.

J I^J'^IÜ m .: *"

3

 . -

Il,,rl
•"■ Ul■-,lll lauuiii.uMiiiiii mmmmmmmm

Ada Specifications for the Dod bitemet Protocol;
The IN1I_ OUT Submodule Report No 1 page 24

tjpc I oca 1 .ne t _rBEponEe_ lype ia(
f ragmen t._r«c a ivad.ok,
fr»qn«nt_not_ race i v«d) ;

u: constant s = ♦ ; Dafa path width: INHJJUT -> FIFO.

type fifo„coB»and_typa ii(
raaal,

a tnra,
ratr I ava);

-- Representation c!auaaa.

for memory_r«quest_type nsc(
Ioad.addraaa -> 8,

receive _datum_octat => 1);

for arv.conaand
Inlt_l
Inlt_2
Inlt_3
Inl1_4
Inlt_5
I .11_6
lnll_7
«and
taat

= >
= >
= >
= >
= >
= >
= >
= >
= >

8,
1,
2,
3,

♦.
S.
B,
7,
8),

i>»c< for out_paapan*a
aant_ol(= > I,
don t_f ragman t_appor => 1,
unaupportad_toa = > 2,
bad_haadar ■ > 8,
bad_arv_conaand = > 4,
I oca I _na t _t iMa_ou t => 5,
I oca I_nat_appor = > 6,

othap = > 7);

for I oca I _ne t _comi»»nd_t ype U8c(

paca I va_f raqmant => 8))

for I ocal_nat_paaponaa_typa use(
f ragman t_rece i v«d_,otr => 8,

fpagaan t_no t_paca i vad => 1);

— Arbitrary cholea. Hardware

— implementers may chooaa tha reverse.

for f i T o_co tnmand _t ype
paaat c > 8,
a tora = > 1,
patp I ava = > 2);

end Ina_Out_Dafa;

;(

KM -* t

.

~m.

•""T" t^mmrnm ", ■ ""
—— ——™ ■""•■ ■■■

068

Ada SpecificatioDa for the Dod btemet Proiocot
The 1NM_ OUT Submodide Report No. 1 page 25

i

Rda-tO-Si I icon Project
University of Utah:

DoD Intarnat Protocol INtl.OUT tubaodula

Rda coda for tha auxiliary packaga naaadt
11 cmory _ II odule

Varaion of Novaabar 1, 1982

with In»_0ut_Daf», ln_0ut_Srv_Dafaj

use InB_0ut_Dafa, In_0ut_Srv_0af■;

package naaory.rtadu I a is

-- Func tI oni
Rapraaants tha Hanory Mcdula that holda to-ba-aant datagraaa
aa well aa initialization paranatara naadad by INH.OUT.

tnak llaBory ia

-- Func t i om
Responds to Raquatt antry call to althar racalva x-aizad address
bytes or aand octata of information froa tha BaBory Bodula to Mhich
It haa accaaa. Thia taak ia a pura aarvar, performing a »enory
funct ion.

■

entry Raquast (
request _type_fo!-«a I t

chunk_of_addraaa_forBaIt

octat_forja I>

BaBory_raquaat_typa|
— Load_addraaa or racaiva_datuB_octat.

chunk_of_addraai_typa|
-- Don't cara uhan raquaat_typa_foraaI
-- racaiva_datuB_octat.

out oc tat_typa>;
— Don't cara uhan Ioad_addra*a.

— Func t ion:
Uhan raquaat_typa_fornaI ia racaIva_datun_octat, thia antry cople.
an octat of information frei a rafarancad location In it*
accaasibla memory, uritaa it into tha octat_forBat parameter,
and than increments that rafaranca.
Uhan reques :_t ijpe_f orma I ia I oad_addraaa, thia antry
"pursues construction" rf a memory address by 'taking in'
tha x-aizad chunk of b'ta supplied by tha firat argument.
Tha vnluaa Input for tha aacond or third parameters ara
'don't caraa', uhan tha firat argument ia, respectively,
raca i va_datuB_oc tat or ioad.adciraaa .

end Flaaoryi

end floaory.riodu I a;

■MWÜMlIltÜ^.

*'"" " ——. ^^^«■■■■■■•■I

168

Ada Specifications for the Dod Internet ProlocoL
The INH.. OUT Submodule Report No. 1 page 26

Rda-to-SitIcon Projact
University of Utah:

DoD Intarnat Protocol INt1_0UT aubaodula

Ada coda for the package naaadi
Fifo_ II odule

Varslon of Novaabar 1, 1982

with In_Out_Srv_Dafi, In»i_0u t_Daf »|

use In_0ut_Srv_0afa, In»_0ut_Dafa;

package F I f o.flodu I a la

task F Ifo ia

-- Function:
Sarvar task only; Issuaa no callz.

en try F I f o _r a q (
co«aand_foraaI: flfo_coa«and_typa;
octat_fornaIt octat_typa)|

— Funt tI on t
This antry accapts the following command values:
raaatt raaats the FIFO
store atoraa an oetat in tha FIFO
retrieve; ratriavas an octat fro« tha FIFO

end Fif o;

end F i f o.flodu la ;

c

HP.IW)I.I I"' "IWl^^W^WW^IBP»«! ^mmmmm

Ada Specifications for the Dod fatemet PntocoL
The INM OUT Submodule Report No. 1 page 27

fida-t0-3 I I icon Project

Uni van i ty ol Utahi

DoD Intarnst Protocol INn_OUT lubaodul«

fida coda for tha auxiliary package named:
l,ocal_ Net_ IIodule

Varalon of Novaabar 1, 1982

vith InB_Out_Dafs;

U.ie Inm_Ou t _De< » ;

package Loca I_Nat_nodula is

task Local_Nat is

-- FunctI on:
This task rapraaants tha local nat module, which can racaiva
and -eturn rasponsas.

entry Out_raq(coaaand.foraaI : I oca I_nat.coaaand.typa)
rasponsa.foraa11 out I oca I_nat_rasponBa_typa);

-- Func t I oni
This antry raciavas a valua of co«aand_foraaI from tha Ina_Out taak
and passes back a rasuIt through rasponsa_foraaI.
Coaaand valuas ara currently llnitad to only ona valuai
racaivs_fragaant.

end LocaI_Nat;

end Local_Nat_noduI a;

o

t

i HI. iwiiiMMMRppi m*m^i^mm*n m miu*mnrrmii*mimmmmmm*

£68

Ada Specifications for the Dod Internet Protocot
The INH- OUT Submodule Report.No. 1 page 28

Rda-to-SI I icon Project
University of Utah:

OoD Irttarnat Protocol INH.OUT submodule

Ada coda for tha main tubnodula packaq« naaadi
Inm— Out— Hodule

Version of November 1, 1982

rith tlaaory.nodu I a ,
lnn_0ut_0a(«,
InB_In_Out_Daf«,
In_Out_Srv_Dafa,
Unchackad.convara ion;

package Ina_Out_noduI a ia

— Func tI on J

This package contains tasK Ina_0ut and an auxiliary procedure named
Do.sand. Tha task accapts commands fro* tha SERVER module and aeta
to forward datagrams to tha LOCAL NET module.

use flaaoryjlodula, Ina.Ou t _Daf s, Ina_In_0u t_Daf s, In_0u t_Srv_Daf ■(

-- Instancas of Unchackad.convarsI ont

function Convart_tuosoaa_array_to_racord
-- Used by Raad.inhaadar.

new Unchecked_conversion(
sourca => oc ta t _buf f ar_typa (8 .. 1);
targat => tuo.octat.racord);

function Convart_tuoajMa_array_to_inta9ar
— Usad by Raad_ln_haadar.

new Uncheck ed_cor, vers i on (
sourca => oc ta t _buf f ar_t ypa (8 .. 1)}
targat = > bl tl6);

— Usad by Raad.in_haadar,

function Convart_tuo_octat_racord_to_intagar
— Usad in Do.sand.

new Unchecked_conversion(
sourca => tHO_octat_racord}
targat ■ > bl tl6)|

function Convart_,lntagar_to_tHO_octat_racord

new Unchackad_convarsIon(
sourca = > b i 116,
targat => tuo_octat_racord);

Usad In Do_sand.

function Convart_srv_coaaand_to_ehunk_of_addrass
— Usad by va~lous.

im
new Unchecked_conversion(

sourca = > srv_coaaand|
targat => chunk_of_addraas_typa) |

c

■wa, n

»1IJ-U.IIJI '-'I' 'H WPWP^WUlllll i. J. . -'"i-«'"""»'^"▼^»WWWWPPII^i^WPIllPWBPHlMIII IILIMUIIllllllllMHIl n KW

.
1/ D Ö

I

Ada Specifications for the Dod biteroet Protocol:
The INM_ OUT Submodule Report No. 1

Ranaaad talk «ntrsi

PflftsZfl

procedure H«Bopy_r .11. i««t(
rtquas t _typa_f. «itl« ■■Bory_r*quat t_typ*|
chunk.o f _«ddr««n lu.'ltll chunk._o f _«ddr«is_typ« ;
oct*t_fora«I: out octat_typ«>

renames llaaory .Rkqutit;

— Eabaddad ttskl tha '■•in shou"

task InB_0ut is

This Is tha principal t«sK of INII.OUT.
It Issuas cails on tha Co antry of Ra«d_init paraaatara and on
Out_paq antrias in HEnORV, FIFO and Lsnlout
as uail as Out_rssat in FIFO.

entry Srv_paq(
sarvar_eoaaand_datus: srv.eoasand;
rasponsa_to_sarvar i out out_rasponsa> ;

— Function!
This antry racaivas coaaands froa INn_SRV aodula and
passas back results through tha paraaatar rasponsa_to_sarvar.

end In«i_0ut;

— Eabaddad taski an *au-<iiiar-j shou'

task Raad_inIt.paraaatara is

entry Co(
Init_nua_foraaii Intagar.ranga 8 .. 7j
rasponsa: out out_rasponsa)t

— Func t i on i
Cats Inlt.nua addrass chunks from INM.SRV and ships thao ovar to
tha tha assodatad flaaory aodula, foraing tha bass addrass of tha
atoraga*block containing tha initialization paraaatars; than
gata tha initialization paraaatars froa tha llamory aodula.
Sats out_rasponsa to aithar aand.ok if succassfui or to
bad_srv_coaaand if unsuccaasfuI. (Can ba unsuccassful if raqulrad
tos table aiza axcaada available local space.)

entry Srv_raq(
carvar_coaaand_datuai srv_coaaand)
rasponsa_to_sarvar: out out_rasponso);

— Func t ioni
This antry racaivas coaaands froa tha INtl.SRV aodula.
Nota that task Ina_0ut has an idantical antry.

end Raad.init_paraaatars;

Eabaddad taaki anothar 'auxiliary shon'

Translata_TOS_Taak is

Funct i oni
Thia pura serve.- task executes concurran t I IJ with Ina.Out whan
performing a raquastad lookup In a globally accaasibla typa.of.aarvlea
tranalatlon tabia to dataraina, yaa or naa, Hhathar thara Is a
loeai-nat typa-of-sarvlea corresponding to tha given typa-of-sarvlca.
If yaa. tha matched local nat tos value it Indicatad In tha fors of
a raturnad Indax into tha tos.tabla. Sand_fragaant uill than uaa
this valua latar to fish out tha local nat toa valua to ahlp to tha
Flfo aodula.

' "■"■

968

—.

Ada Specifications for the Dod Internet Pro loco L
The INM_ 0UT Submodule Report.No. 1 page 30

entry Bag In.translation(
Ina.toc.bytat bit8)|

— Function:
This antry accept» the pataad (fron INH.SRV) TOS byta.
Tha rendezvous la i mnie d i a t e I y broken to permit tha calling task
to raauaa conputat Ion. In tha "atataaant aaqual" top thla antry'«

accapt atataaant, tha aarvar talk partoraa tha paqulrad lookup.
For a auecaaaful coaplatlon of tha search, tha
suecaaaful.tranalatIon flag la aat to trua, othaPMlaa tha flag

la aat to falaa.

entry Sand_raauIt(
auccaaaful_tpanalatiant
t os_lndex :

out boo loan;
out i n t a g a p

range 1 aax_toa_tabla_alza)|

-- Funct ion:
Sanda back tha result of tha laaadla'aly preceding Bagln_tpanalation

• ntpy call. If auocaaaful_tpanaI a11 on la tpua, than toa.indax
rafaranaaa tha toa_tabla alaaant containing tha corresponding

local nat toa valua.

end Tpana lata_TOS_Taak;

— Variable declarations:

I as t_resuI11

tiaa_out_ln_al I Ilaaconda:

out_paaponaa i= aant_ok|

ll intagar range 1 .. 2a»I6
-- Coaputabla fpoa
-- lna_tiaa_out (aaa balou)
-- In ppocadupa
-- Raad.lnit_papaaataPB.
-- Actual ly ua aay net
-- compute it •flap all.

local nat_toa_indaKi Intagap range 1 .. aa)<_toa_tab I a_BIia>
— Valua received fPOM call
-- fpoa Raad_in_haadap on
— Trans I ate_TnS_t«5L .

—Variables to hold initialization

InM_aax_packa11

InB_addpaaa_l angtht

Ina_t iaa_out t

li

tHo_octat_paeopdj
— largest size packet

— fop tha local nat.
-- Represented as a pair Of
-- octata and alao used
-- aa a 16-bit intagap aftar
-- applying Unchackad_
-- conversion.

octat.typa;
— Uaad In Raad_ln_haadap.

two_octet„record;

— UaIting tiaa at LN.
-- Represented aa a pair of

— octata and alao uaad
— aa a 16-bit intagar after
-- applying Unchaekad_
-- conversion.

octat.typa;
— Early/late,

ack.typat

local_nat_typa_of_aepvlca_tabla_paH_aliai octat_typa|

f

" •e-.'

,JI1

3 V o

Ada SpecificBÜODS for the Dod fatemet Protocol
The INH_ OUT Submodule Report No. 1 page 31

r

nuBb«p_of_local_n«t_typ«i_of_««rvlc«i oct«t_typa|

dont car^.oct.t. oct.t.typ«!
-- Uctd «t an «ctual papi««t«r lor n«BOpy.R«qu«it «ntpy
 calls uhmn «ddrai« chunk» «r« balng aovad to tha
— aaaory aodula.

-- Array;
tos tablai octat buffar.typa(8 .. ■ax_tos_tabla_8Iza - 1J|

— Tha slza of this tabla
— dapands on tha storaga
— spaca avallabla In tha

i ^

?

— tllscallanaous eonstantst

dont cars X datum: coMtant chunK.o<_»ddras8_typa «= 8;
— Used as an actual paraaatar fop Haaory.Raquast antpy
 calls uhan no addrass chunKs ara actually ■ovad.
 Hardware laplaatntap may usa IndataraInata valua.

end Ina_Out_nodula;

package body Ina.Ou t.flodu I a is

procedure Do.aand

-- Functloni
This procadura sands an Intarnat daiagra« In tha lollowing stapai

1) Roads tha intarnat haadar.
2) Translatas Intarnat TOS byta to a local nat TOS.
3) Constructs fragaants and sand» than to th» local nat.

Tha option list for all but tha first fragaant ara
coapactad, and tha chacksua for aach fragaant is coaputad.

finy »ncountarad arror tarainatas transmission of th» datagraa
ulth an approprlata valua assignad to tha (global) varlabla, naaad

latt_r»»ult.

is separate;

task body Ina.Out
is separate;

task body Tr«n» I a ta_TOS_ta»lc
is separate;

task Raad_lnit.paraaatars
is separate;

end Ina.Out .llodu la;

—

r- •. mmmmm

Ada Specifications for Che Dod btemet Protocot
The 1NM_ OUT Submodule Report No. 1 page as

Bd«-to-3lI Icon Project
Unlvtnlty of Utah:

DoD Internet Protocol IN(1_DUT lubaodula

Rd* coda for tha body of tha principal taak naaadt

lnin_ Out

Version of November 1, 1982

■epmrutc (I nit.Ou t.flodu I a)

task body Ina.Out

— Function:
Thit it tha pt Incipal taak of INfl.OUT.
It iaauaa calla on tha Go antry of Raad.init.paraaatars and on
Out_raq antriaa In HEnORY, FIFO and L»n_0ut
aa wall at Out_raaat in FIFO.

Icoaaand: arv.coanand;
lnit_nua: intagar range 6 .. 7;
dont_cara_octati octat.typa; -- Used aa a duaay.

— Harduara InpIaaantora
— use an Indatarainata
— vaiua.

begin

-- flain roaaand loop
loop

— Cat next coaaand froa tha aarvar.
accept Srv.raq (

aarvtr_conBand_datuai arv_coBBana;
raaponaa_to_aarvar : out out_raaponaa)

do
icoaaand t= aarvar_coaaand datua;
if icoaaand ■ taat then — Raport laat result.

raaponaa_to_aarvar i= laat.raault;
end if)

end Srv_raqj __ Brenn rendezvous.

-- Nou handle non-test arv_coaaanda.
case Icoaaand in

when lnit_.l I inlt_2 I lnit_3 I init_4 =>
caae icoaiiand is

when ini t_l = >
in I t_nun : =- 1 j

when Ini t„2 ■ >
in It_nua I ■ 2;

when Ini t_3 = >
in It_nuB t = 3;

when ini t_4 ■ >
in I t_nua i= 4;

when others ■ >
nulli

end case;

— Start up taak R«ad_inIt_paraaatara .
Raad_init_paraBatara.Co(

ini t_nua_fo'aal => lnlt_nua,
raaponaa => laa t_raau I t) |

— End of init coaaand processing. If unsuccessful, tha raaponaa
— to tha SRV aodulo ulii ba bad_arv_coaaand.

wmmmmr • ,|"»111 ■■■ mmmmmmtm.

i .»
868

Ada Specifications for the Lod IntemetProtocoL
The INM OUT Submodule Report No. 1 pa«c33

when sand => — Qtt »nd put (aova) all but laat
— addr_chunk for tha acidraaa
-- of tha datagram fro« tha
— SRV to tha tlaaory aodula.

— Notai In tha folloulng tuo loops ua have a glitch In that ua
■re aatehlng • aarvar_coBBand_datuB to
t«P« chunlt_of_addraaa_foPBal. Look* Ilka ua nasd to
apply Unohackad_convar«lon. Thla problem also arlaaa
In aarliar varalons of thla task.

for Indax in 1 .. Inlt.nua - 1
loop

accept Srv_req (
aarvar_coaaand_daiuat arv.coaaand)
raaponaa_to_aarvar> out out rasponaa)

do
iconmand >= tar v er_co»>"i»nd_d« t u m ;
nanory.raquaa t(

raquatt_typa_for»aI r > Iuad_addra«8,
chunk_of_addraaB_fop»aI r > iapvar_co»»and_datu«,
octet,foraal = > dont_cara_octat>|

end Srv_reo;
end loop i

— Laat addr.chunk of datagram addraaa Is a apaclal easa, dapanding
-- on ack_typa In affact.

accept Srv_raq (
sarv«r_connand_daturn srv.COMBand)
raaponaa_to_ssrva[M out out_rasponsa)

do
tlaBory.raquaat (

raquaat.typa.forBal => I oad.addraaa ,
chunk_o f _addrass_f orsa I => sar var_connand_da tua,
oclat_f opiea I => don t_cara_oc ta t) {

— Lata.ack casa, uhjra srv is hald up till In consuaas datagram.
if ack.typa ■ lata.ack then

Do.lend; — D0 4|I remaining processing for
— tending this datagram.

end if;
end Srv_req;

— Nou aarly_ack casa, uhara srv Is not hald up.
if ack.tyoa - aarly_ack then

Oo_sand; — Do all raaaining proeaasing for
— sanding thla datagram.

end if)

whtn othnn = >
last_rasult i= bad_srv_coaBand)

end

end loop;

end Ina.Out; — and of task body

 ^, In»» -«mr

W I w^MWHiwimiiiiiiiinRMiRfliiiHiiiaiii^^ ipm ^«■MMPI

Ada Specificaüona for the Dod fatemel ProtocoL
Tbe INM_ OUT Submodule Report No. 1 page 34

flda-to-S I I Icon Projtct
University o« Ut«h:

DoD Internat Protocol INH.OUT subModul*

II fid» cod« for th« body o* th» ■uxlllary t«»lt naatdi

II Read-Init-Parameten tutod by In«_0ut)

Varsion of Novaabar 1, 1982

■eparate (Inn.Out.tlodu I a)

task body Raad.InIt.Paranatara ia

-- Rccasaad globalst

— nuMbar of I oca I_nat_typa«_of_aarv I ca« octat_typa
— local nat typ« of_«arv1ca_tab1a_ron_aIza: octat_typa
— tM.tlbl.r octat_buff.r_typa

— Ranaaad taak antryi

— Tha packaga Haaory tlodula containing tha taak ilaaory hold«
— to-ba-««nt datagram« a« uail «« Initialization paraaatar«

— naadad by INH.OUT.

procedure namory.raqua«t(
request typ«_for«al: «.amory.raquas t_typa ;

 Load_addra«« or r«c«Iva_datu«_octBt.
chunk of addrac«_forB«l: chunk_of_«ddra««_typ«;

 Don't cara nhan raqua«t_typ«_fer««I
— r«c«Iv«_datua_oct«t.

octot.foraal: out octat_typa)
 Don't cara uhan load.addrac«.

renames (1 • mo r y. R aqu• a t)

 Local variabla daclaratljnt

II'ThäföiloHlng variabla i« commont.d out. It appaarad only in tha
— "hl-'h-laval" used to r«ad In tha TOS tabla. Saa balon.
— nu bar_of_toa_tabla_octata: Intagar ranga 2 .. «ax.toa.tabIa_«lz« - 1|
oct«t_r«gl«t«r: octot.typ«;

begin
loop

aCCel?i|Ct0.nU..for..l, bl.4, - For Crt.r'« p.p.r
- — only; otharHlaa blta

response: out OUt_r««pon««)

_ ..„♦ „^. -- fll«o ««an« lnlt_olt. response i= ««nt.OKt "'* —

— Get fro« th« ««rvar all of th« addr_chunk« n««d«d to for« th« baa«
-- addraa« In aaaory that holds tha initialization paraaatara and
 sanda thaaa chunks to tha llanory aodula.
for Indax in 1 • • In It_nua_foraaI

'TcceplSrv.r.qC " B«» "«V ***"" v - i — chunk froa tha
-- Server flodul«.

8arv«r_eoaBand_datua« «rv_coB«and;
r«»pons«_to_S5rv«r: out out_r««pons«)

d0n«mory_r«qu««t(~ '"« chunk out to th«
— n«Bory module.

Ada Specifications for the Dod Internet Protocol:
The IN1I_ OUT Submodule Report No. 1 page 35

.

raquait_typa_f oraa I => I o»jl_«ddi ••■,
chunt:_of_«ddP«i»_«or«« I =>

Conv«pt_iPV_coBli«nd_lo_chunlt_of_«ddr«i«
(■•rv«r_eonaand_datu*),

oct«t_fop««l = > dont_cap«_oct«t)j

end Spv.paqt
end loop;

 Gat tha 6 Individual Initialization papanatara (contalnnd In tha
 next S octft« pacalvad) Irom tha Haaopy Hodula.
for Indax in i ■- 8
loop

tlaaopy.paquait (
paqua8t_typa_fop»ial => paca I va_datu«_oc t at,
ehunK_oT_iddpaaa_fop«al => dont_capa_X_d«tua,
octat.fopaal = > octat_paglatap) |

cose inda> ia
when 1 = >
when 2 •->
when 3 = >
when * = >
when 5 ->
when 6 = >
when 7 = >

when 8 = >

end CBSC;
end loop;

-- Convert tha
-- tiaa.out -In.

Ina_aax_packat. lo
lnM_Max_paelcat. h I
Ina.addpaaa.langth
I rni_t li>a_iiut. le
Inm_\laa.out .hI
■ek_iypa

«= octat.paglstapt
i= oetat.paglatari
!■ ectat_paglatap|
• at octat_pag i atap ;
>= octat_paglatap;
i = octat_paglatapj

local_nat_typa_of_8apvlca_tabla_pOH_al2a
i = octat_pagIatap;

nuabap_ot_locaI_nat_tgpa8 .of.aapvlca
t .i octat_pag I atap;

local nat timeout into a I I I I aaconda.7
millisecond« i= ln«_tlaa_out / 1888.8;

— Laft-hand side variable da

— In Inii_Out_nodu la. Valua I
-- latap In Do_8and procedure

-- Nota: Davia never did this
— hia daalgn. Ia thla atap n

Nol Ma don't naad thla ata
alnca tha quotient can faa
approximated by a dlv by

In tha avant Ha naad to
represent milliseconds.

cIapad
a used

In
aadad?

P

2*»lt

nuBbap_

I in typa of aapvica tpanalatlon tabla.

Tha folloulng coda In comments la paplacad baton by a
•lOHap-laval" vapalon that cloaaly paflacta tha hapdwapa
implementation chosen In Hhlch Ha allalnata tha naad fop

for a aultIpllap.

of toa tabla octata t= local_nat_typa_of_aapvIca_tab Ia_POH_BIra
• nuabap_of_local_nat_typaa_of_8apvlca;

K to aaa If paqulpad tabla alza exceeds aaxIaua
iber of toa tablaoctata > «ax.toa.tabIa_a I ia ihan

-- Chaclc to aaa If paqulpad tabla alza axcaada aax I aua
if nuBbap_of_toa_t«bla_octata > ■ax_toa_tabla_alza iiian

respons« I J b ad_s ■• v_co aman d j

patupn;

and if;

for Indax In 1
i oop

nuabap_of_toa_table_octata

na«opy_paquaBt (
paquaat_typa_fop«al => paca I va_datu»_octa t,

chunlc of addpaaa_fop«al => dont_capa_X_d«tua,
octat.fopaal => toa.tab I a (Indax));

ind loop;

*~ MiiiMi miMimmi W—IP—Ill il nil I M i. JIMW.IIi

LUb

-

Ada Specificaüona for the Dod btemet Protocok
The INM_ 0 ÜT Submodule Report No 1

page 36

declare

co0:::::^';:;:;:;:; ^j:;;; """--.f.......B.t.tMM.^f ..rvic.t

loc«l_n.t_typt_of_B«rvlc«_t«bl«_ro«_«lr«|
lnd•x, lnt«g«p range 8

.. nu«b«r_o«_local_ntt_typ«t_of ■•rvloa
* ,0.c*l-n»t-t«P«-Of_i.rvle._t«bU_roii slz.

begin '= "'
rou_nuBbtr i= ff

loop n

col.nu.b.r ,= 8, " ,00P ^•id, •" roM» •« "S table.

10n«ory_r.qu..t{ " Inn'r ,O0P r'"" ln on• P0H of T0S «••«••.
r.qU..t_typ._for..l => r,c.lv, datu-

oc": i r-:.
d^'"-,or■•, -> --«-"^J!"."";: '

oct.f_for..l => to.^t.bl.dnd.x)),

cs'.nuBbtp i= col_nu«b«p + 1,
exit when col_nuabar = local net fun. «i .

iocai_nat_tupa_of_8arvica_tabla_roH_8lza|
Indax «= index + 1,

it Indax > ■ax_toB_tabla_8l2a then
raaponaa iu bad_8rv_coB«and,

endlT" "" E,<'t th' CUrr•n, •cc",1 »«•»•■•"t.
e,,d looPI ~ End innar loop.

roM_nuahar i= roM.nuBbar + 1;

en^ltoo;!,e,, roH-nu'b,r = nü-b;r-v-,o
I
c"-n,,-typ"-of-"-'"»

endi
yi — End outer loop.

— End daclara block.

end C o;

end loop;

end Raad_Inlt_Parjaatar«;

— End of Init processing.

— End of outer-most (Inlflnlta)
— loop.

lupuwiajMiMns^HBipipiip mm»m^^w*immmmimmmimmmmmmimmm

1
206

Ada Specificatioiis for the Dod bternet Protocot
The INK- OUT Submodule Report No. 1 page 37

1

flda-to-Si I icon Project
University of Utah:

DoD Internat Protocol TNt1_0UT Bubaoduli

Rd« coda (or tha body oi tha auxiliary tailc naaadi

Trnnalale_TOS_Tnak (uiad by Raad_l n_haadar >

Version of November 1, 1982

acparnte(Inm. Ou t _nodu la>

task body Trans I ata.TOS.Tack

is

— Local variable dtclarationci

index: intagar range 8
locaI_toa_bytai blt8|
success: boolean;

Bax_ los_t «b I B_S i ..e - 1;

begin
loop

accept Begin t r ans I a t i on (i nir_t o s_by t e : bit8)

do
local tos byte i= inn_to>_byt•;

end Baqln_tran»latlon> 7- Broak randozvou«,

-- Saarch for tha INn_T0S byt» in tha TÖS translation tabla.
success I= false;
Indsx t = 8 ;
declare

roH_nuBbari Intaqtr range 8

-- Initialize for search.

number of I oca I_nat_typat_of_»arvica -1

1= B;
— Tha value of
— nu«bar_of_local_not_typa«_of_
— carvics la dynamically dsfinsd
-- in previous action of tha
— Raad_Init.Paraaatars task.

be^in
whilr ron_nu«bar < nu«bar_of _loca l_na t_typoi_o f .aarv I ca

loop
 Test for tha local_toa_byta in tha TOS tranalation tabla.
if to«_tabla<lndax) = I ocal_tot_byta then

\nii*x t= Indax + Ij — Indax nou points at
— local nat tos.

success s = true ;
exit;

else
Indax t= indax + I oca I_nat_typa_of_sarvico_tabIa_roM_8Izaj

end if;
rou_number 1= rou_nu«iber + Ij

end loop;
end; End of declare block.
 End of saqual for preceding accspt statsaant.

accept Sand_rasu 11 (
■ uccassfut.transl .tloni out boo I a an 1
tos indaxt out intagar

range 1 •• aax.tos.tabla_sIza)
— tos_lndax value Is cant to tha
— global named "Ioca I_neu_fos_1ndex"
— for usa by Sand_fragaant.

do
succiss(uI_trans I at ion !■ success;
tos.lndax I= index;

■WWU HI ——-™—«-

G06

Ada Specifications for the Dod Ihteroet Protocol:
The FNM _ 0 UT Submodule Report No. 1 page 38

end S«nd_r«iu)t|

end loop;

end Tran*lata.TOS.Task;

'

, „ «*..,.

mmmmm w^m*^m^^m^^m^^*-*m

Ada Specifications for the Dod bitemet Protocot
The DfM- OUT Submodule Report No. 1 page 39

Rda-to-SI I icon Projaet
Univanlty of Utah«

DoD Intarnat Protocol INn_0UT aubaodula

Ada coda for tha body of tha prosadurat

Do-Bend

Varaion of Novaabar 1, 1982

with Ina_In_Oiit_Dafa, Ina_Out_Dafa;

use Ina_In_Out_Dafa, Inm_0ut. D«ts ;

aeparate(Ina_Out_Rodu la)

procedure Do_aand la

-- Func tIoni
This procadura aands an Intarnat datagraa In tha following atapai
1) Cat* tha intarnat header froa Haaory.flodu I a.
2) Datarainaa by antry calla to Tranalata_TOS_Taak If tha

tha intarnat TOS byta corraaponda to a valid local nat TOS.
3) Conatructc fragments and aanda thaa to tha local nat.

Tha option Met for all but tha first fragment ara
coapactad and tha checksum for aach fragment ia coaputad.

Any aneountarad error tarainatas transmission of tha datagram
with an appropriata (axpI anatory) value assigned to tha (global)
variabia, naaad iaat.raauit, daclarad in tha Ina.Out.floduI a.

I — Recessed globalai

— unsupportad_tosi out_raaponca;
— bad_haaderi out.raaponaa)
— dont_fragaant_arrorj out.raiponaa |

— Subtypa declaration:

aax_lna_addraaa_a Iza: constant:- 2; — Siza In octets.

subtype Ina_addraaa_buffar_typa ia
octat_buffar_typa(«..aax_lna_addra8a_alxa-l)>

— Daclarationa of local variables:

lna_addrata_buffars
header_bu ffar I

lnm_address_buffar_typa;
header_üuffer_type;

-- Haadar racord.

haadar_octat_arrayi haadar_octat_buffar_typa;
— Octat array uaad to stora haadar.
— In a hardware iiap I aaantation, this
— array can ba tha aaaa aa the
— haadar.buffar.

— Naad to Inaart hara address clauaaa for both haadar.buffar and
-- haadar_octat_array.

header_ I angthi

aagaant_langtht

haadar.Iangth_typa}
— Haadar slza In octata.

Intagar range segnent_Iou_«ddress ..
aagaant.hlgh_addraas|

— Langth of sagaant part of datagraa
-- In octata.

mmm

'*"•' "■""-'< «■«wwii«u™.i

Ada Sp«!ciricaUons for the Dod Mtemet Protocat
The IN M _ 0 UY Submodule Report No. 1 page 40

good_h»»d«r_rasuIt: booluan;
ok _t OB._t ran» I a 1 i on : booliianj

— Racult of the raad_ln_haadar call.
-- Raault of tha tos_tran»I atI on.

ok.fragMant.trantMiaalent boolaan;
»■cond_fragmant: boolaan;

ti.or«_f ragnant»!

fragman t_langtht

— Result of tha Sand_fragaant call.
— R flag that Indlcatai If tha
-- currant fragment la tha second
-- fragaant of tha currant datagram.

boolean; -. ft flag that Indlcatai If thara ara

-- more fragaanta to ba foraad.
intagar range 21 ..

Convart_tHO_octat_racord_to_lntagar
(Ina.aax.packat)»

— Uaad to Indl.-.ata tha currant
-- fragaant'a If.ngth.

currant_fragaont_offaat i Intagar range 8 .. 2 »* 16 - Ij
-- Indlcatai tha currant fragbint'a
— offaat Into tha overall data
— aagaant.

fragaant_»agmant_langthi Intagar range 1 ..

Convart_tno_oc tat_racord_to_lntagar
(lna_aax_pacKat) - ?8;

— Uaad to indlcata tha langth of tha

-- currant fragaant'a data part.

datagraa_total_langth« Intagar range 21 .. 2 •• 16 - lj

— Used to aava tha total langth of
-- tha currant datagraa.

chackauai

chaclciua_H lth_optiona:
tNO_octat_racord;
tM0_0C ta t_record •

-- Chackaua valuat ara davalopad
-- In these auxiliary variable« and
-- latar Inaartad Into tha
-- header_buffar prior to copying
-- tha haadar to tha Flfo aodula.

— Conatantat

fragaant.blt_trua> constant Intagar i= 1|

-- Uaad to »et tha aora.fragaanta bit

— In haadarjguffar.f lagt.
conatont intagar i= 2;

— Uaad to taat If tha flags field
-- Indlcatai that no fragaantatIon
-- la to occur.

Local procadurai and functional

do_not_fragaant_trua:

procedure Raad_ln_haadar(

good.haadan outboolatn)

-- FunctI on«

Thli procadura flnt raada In tha local nat addran of tha
tha datagraa Into a local nat addraaa buffar and than raada In tha
datagraa haadar octet by octat Into a haadar buffar. Upon
successfully completing tha tranafar of tha haadar, tha flag

good_haadar li lit to trua; otharulia It la aat to falia.
is separate;

procedure Coapact_optIena

-- Function:

Thla procadura la invoked ultin comtructing tha lacond fragaant.
Tha procadura coapacta tha Mat of optlena In tha haadar by keeping
only those optlom that ara flaggad to ba coplad. TS, haadar-
langth and total langth ara also updatad.

is separate;

p-occdurc Sand.fragaant (
data_fragnant_ilzai bl tl6;

).

— ■wwiaw

yub

Ada Speciflcations for the Dod inlemet Protocol;
The IN M _ 0 UT Submodule Report No. 1 page 41

EuccBEi f u l_f ragir •n1_trannn i is i on: out bool*an|
exp I an«t ion: out out_r«spons■)

-- Funr t i oni
Tt It procadur* putt Into tht local not FIFO tht follouing -
1) local net addratt - local not addratt for tha currant fragaant
2) local nat TOS - local nat TOS for tha currant .fragaant
3) fragment haadar
4) fragment data - which It pulled out byte by byte from the Heaory

attociatad uith the INH.SRV module. The tlze of
the data fragment It patted at a parameter to thlt procedure.

Thlt procedure, after ttuffing tha FIFO, uill do a fined entry call
on tha local net (the call autt be coapleted In the tiae tpeclfled
by a paraaeter patted down froa INtl.SRV). Upon tuccettful
trantaittion of the contentt of the FIFO to the local net, the
tuccettful_fragaent_trantalttion flag will be aat to true; otheruiae
it It tet to falta. Tha value attigned to *exp lanaation* conflraa
the tuccett (tent.ok) or providet the reaton for failure.

is separate;

f uncLicn 111 n I nua (
firat_operand> integer)
tecond_operands Integer)

return integer

II

c

— FunctIont
Thlt function takes 2 operandi and returnt the ainiaua of the
operandt.

begin
if f1rtt.operand > tecond_operand then

return tecond_operand|
else

return fIrtt_operand|
end if)

end fl in i mum;

Body of Oo_tend begint here.
begin

Read_i n_header (good_headar => jood_header_reiu 11))

if not good_headar_retu 11 then
latt_retult t- bad_header)

return)
end if;

if not (Convert_tuo_octet_record_to_lnteger(
headar.buffar.total_length) >

Convert_tuo_octet_record_to_lnteger(
Ina.aax.packat) > then

Begin 'tingle packet' cate.

— Trantfar eheclctua_uIth.optlent, whose value uat computed
— by Read_in_header, Into the proper a!ot In tha header_buffer.
header_bu f f er .header_checlrBua i= checktuk-.ii I th_op t lont)

Send.fragaent(
data_fragaent_eize => tegaent_l eng th,
Buccettful_fragaent_trantalttion => ok.fragaent.trantaittIon,
explanation ■> I aa t_retu I t >)

retarn)
end if)

End 'tingle packet' caaa.

** -»-^ i»*~

wm

11^ I IHIiil

i

1 ll■|ll"ll»ll■""■■ll Ll11 ' ll,,M m^mmrn

LUb

«"■•""" mrntmmmmmmmm

Ada Specifications for the Dod btemet Protocok
The INH- 0UT Submodule Report. No. 1 page 42

Begin "multiple packet' (two or Bor« fragaants) cat».

— Fragaant tha dataqraa.
if haadar_bu f f ar , I lags = da_no t_.f ragaan t_trua then

lait.ratult i= dont_fragaant_arror|
return)

end if;

— Inltiallxa fragaantxtien variables.
currant_fragnant_offaat i= 8;
■ acond_f ragaan t i= lalaa;
aora.f ragnanta i= trua;
ok_{ragnant_traniBiaaion <= trua;
datagraa.total_langth J= Convart_tMO_octat_racord_to_lntagar

(haadar_buffar.total_langth)|

-- Back out octat containing old flaga from tha chackauB.
ehackiuB_uIth_optIona.to i= chackaua.HIth_optIona.lo

zor haadar_oetat_array(6);

i— Sat aora fragaanta flag in haadar_buffar.
haadar_buffar.f I aga i= fragaant.bit_trua|

-- Update chackauB with octet containing neu flaga value.
ehackauB_uIth_optIona.Io >- chackauB.»Ith_optIona.lo

xor haader_octet_array(6)|

while aora.f ragaant a and ok_f ragaan t.tranaa i aa ion
loop

if aacond_fragaant then
Coapac t_opt iona;
aacond.fragnent i= falae;

end if)

Iragmant_iength i= niniauaC
f i ra t_oparand ■> da tagraa.tota I _lang th
cecond_operand - >

Convert_tuo_oetet_buffer_to_lntegar
(Ina.aax.packat> >;

fragaant_aegBent_length t= fragaant_length - header_length;

— Inaert neu total length into the header and update checkaua.
-- First back out octets containing total_langth froa the checkaua.
checkauB_uIth_optiona t= chackaua.uith_optiona

zor header_buffer.totaI_length)

header_buffer.totaI_length i = Convert_integer_to_tuo_octet_record
(fragBent_length)|

— Now update checkaua uith octets containng neu totaI_length.
checkauB_uith_optiona ■■ chackaua.uIth_optI one

zor hcadar.butfer.total_length;

-- Teat to aae if ue are sending out the last fragaant.
if currant.fragment_offaet + fragaant_8egMent_length =

se^Bant_iength then
~ If a < condition, then He
-- then ue still have another
-- fragaent to tranafar.
— Ue ahould not get a > value
— becauaa the laat fragaant la
-- computed to contain the
— the remaining octets of tha
— data «egaent.

— Clear aora fragment» bit and adjuat checkaua aa ueI I.

-- First back out octat containing old flaga from tha checkaua.
check8UB_uIth_optIona.lo t= ehankaua_HIth_optIona.Io

Zor header_octet.array(6);

«

^■■^^•w """"" mimimmmiimmmamm •~**^mmmm vmmmmm

Ada Specificatiocs for the Dod btemet Protocot
The 1NM„ OUT Submodule Report No. 1 pace 43

haadar_buffar.fI«gs <= 6;

— Now update ehockaua with octat containing nau flags valu«.
chack rum_H i t h_op t i on» . I o i= check «un_u i t li_op t i om . I o

zor haadar.octat_array(6) |
end ift

— insert a nau fragment offset Into the header and also adjust chackaua.

— First back out octets containing fragment offaat fron the chackaua.
chackaun_uith_optiona <= chackaun.wIth_optIona

xor Convart_tMOBo»a_«pray_to_rocord<
header_octet_array(B .. 7));

haadar_buffar.fragmant_offaat)= currant_fragaant_offaat|

-- Nou update chackaua fiatd in haadar_buffar uith octata updatad for
-- nau fragaant offsat.
haadar_buffar.haadar_chackaua i= chaekaua_uith_optlona

zor Convart_tuoaoaa_array_to_racord(
haadar_octat_array(B .. 7));

f
Sand„fragaant(

data_f ragaant_a iza => aagaant.i angth,
auccaacfui_fragaant_tran«aiaaion ■> ok_fragaant.tranaaisaion,
axplanation => I as t _resu I t) :

1
-- Sat up paraaatara for tha naxt tiaa through tha ioop.
if currant_fragaant_offaat ■ 8 then

aacond_fragaant t= true;
end if;

currant_fragaant_offaat i=
fragmant_aagnant_iangth
+ currant_fragaant_offaat;

if not (currant_fragaant_offaat < aagaant_iangth> then
aora_fragaants i= faiaa;

end if;

end loop;

end Do_s«nd;

End "multiple packat* caaa.

mmmmmmmmmimii*''miim i... il -,U ■■'"■■,'' "■l " —-' ^

DUD

Ada SpecificatioDs for the Dod btemet Protocol
The INM _ 0 UT Submodule Report No. 1

p^«44

fid«- to-S I r Icon ProJ«ct
University of Ut/Jhl

DoD Inttrnat Protocol INfl.OUT ■ubaodul*

fid« coda for the body of tha procadurat

Read_in_ header (callad by Do_a4,nd)

Varaion of Novaabar 1, 1982

■eparate (Ina_0ut.HoduIa.0o_«andJ

procedure Raad_in_ha«dar
(good.haadar: outboolaan)

— Function:

Thl« procedure first raada in tha local na(addrass of tha
tha datayraa into a local nat addraaa buffer and than raada In tha
datagram header octet by octat Into a header buffar. Upon
successful iy completing tha trarafar of tha haadar tha flag
good.haadar la aat to trua otherwise It la aat to falaa

— In tha course of read.ng in tha haadar, it makes a pair of antru calla
— tr.n. ata.toa.ta.k to obtain tha local nat typa of "arvlca. M UnS
— and also computes tha checksums (ona without and ona with the options

-- UlllrlV't. I*"',' Ch'.sk'.Umn K* ■•«"■"«•»•<■ 1" »"o-octat racord. daclarad (and claarad) In Do.Sand and named e^cksua and
chaclcsui«_H i th_opt ions, raspact i va lu.

— Constants:

• In lBu«_h«adar_langth: constant intagar i= 28;

hlah^'hi!' ' COMt*nt,= "«I "- UPP^ ♦-bit .ask for an octat.
liu K hi!^ ' «>Mt«nt'= 224, - Uppar 3-bit Mask for an octat.
""!-!{! ! «""j"*" ?»! " Lo« 5-bit «ask for an octat.
IOU-*-bl,, ' oon«tant:= iS, — LOH 4-bit aask for an octat.

lo^wVT' ' COMtMtl= »» " High byta of tMo.oc tat.buf far.
loH_octat_byta . conrtant . = 1, -Low byta of tHo.octatlbuff.r.

— Recessed globalai

- chackaua: tuo.octat_racord| — Daclarad In Do sand,
— chack8u«_Mlth_optionst tMO_octat record;
— local_nat_toa_lnda.<I intagar ranga 1 .. «ax.toa.tab la_s lia,

— Local varlabia dac larat lonss

octat
tuo.octats

I octat_iypa,
i octat_buffar_typa(8 .. 1) ,

— Renamed procedures and functions«

procedure l1aaory_raquaat (

raquast_typa_foraali aaaory.raquaat typa;
chunk_of_addraaa_foraali chunk of addrass.typa,
ortat_foraal. out oc ta t_typ'a)

rename» flaaory. Raquaa t;

function flaak (

nuabar_to_ba_Ba8kad_foraal: Intagar,
aask.foraali Intagar) return Intagar

rename« InB_In_Out_Dafs.na«lt,

— Local function definition:

function Even (

"-if"" '"»""""■'■-■ PI1IIU.I ■MH

'

I

I

Ada SpeciTications for the Dod btemet ProtocoL'
The INM_ 0 UT Submodule Report No. 1 p^e 45

operand: Intigar)
return boo loan

ia
begin

if operand rem 2 = • then
return truot

else
return (alaaj

end if;
end Evan|

begin

good_haadar := truj)

— Gat the local nat addraaa. By convention, this field aluaya precede«
— tha actual datagraa to ba tant.
for indax in 8 . . I nin_addraaa_l ang th - 1
loop

Haaory.raquaa t(
paquaat_typa_f oraa I => raca I va_da tua.oci at,
chunl(_of_addr««a_f oraa I => don t_cara_X_da tu»,
ectat_foraal => I na_addraaa_buf f «r (i ndax)) |

end loopi

— Gat tha header'» varalon number and length.
Ra*ory_raqua8t (

raquaBt_typa_fop«a I => raca I va_da tuB_oc tat,
chunK_of_addraa8_«or«al => dont_cara_X_datu«,
oetat.foraal => octet);

haadar_buffar.varaI on i= aaak

haad^r.buffar.IHL

(nuabar.^o.ba.aaakad.f oraa I => octet,
■ aal(_fe,-«a I => loH_4_bltB>|

) = »last
(nunbar _to_ba_aaal(ad_f oraa I => octat,
■ a«lt_forBal = > h I gh_4_b I ts) t

-- Check tha header varaion nuabor.
if not (haadar_buffar.varaIon - 4) then

good_haadar im false;
return)

claif haadar_buffar.IHL a 4 < «InIauM.haadar.langth then
good_haadar I« false;
retumt

end if)

— Updata octata of tha two chaekauaa.
checksum, lo i= octat zor chackauB.Io;
chackaua_HIth_optlona. Io <= octat zor ehackaua.lo)

— Cat tha typa of aarvlca octat.
tlaaory.raquaa t (

paquaat_typa_for«al => raea I va_datuB_oc tat,
ehunk_ef_addrata_feraal ■> don t _care_X_da tu« ,
octat_foraal => haadar_buf tar . typa_of _«ap vlea) j

— Ua aaka tha flrit antry call on tranalata_toa_taaK.
Translate_TÜS_Task.Bag In.tranaI at ion(header„buffer.typa_of_aarvIca)|

— Gat tha total langth half Herd (2 oetatt).
for Indax in 9.. 1
loop

flaaory.raquaa t (
reques t_typB_f orea I ■> r e c e i ve_da t ua_oc t e t ,
chunk_of_address_formaI => dont.care_X_datu»,
octet .forma I => tuo.octata(Tndax)) |

ilWililP mmmmm 11 !' m«wm

TI6

Ada SpecificaUons for the Dod fatemet ProtocoL
The)NM__ OUT Submodule Report.No. 1 page 46

end loop)

h««d«p_buH»r. total _li«ngth t= Conv«r t _tuoioii«_arp«u_to_p«cord
(tuo_oct«ti(0..1))|

— Compute tha aagaant'i langth In oetata.
• agaiant _langth

i= Convart_tnoao«a_array_to_lntagar<tMO_octat»(e. . 1)) - haadar.langthj

— Updata tha two chaekauaa.
chackaua) = chackaua xor

Convart_tMOBoaa_apray_to_racord(tMO_octat8(8..1))j

chackauB.ui th_opt lona t= chaclcaua_u I t h_op t lona xor
Convapt_tMoaoan_app«y_to_pacopd(tHO_octat«(0..1))|

— Gat tha idant11ieation half uopd (2 oetata).
for Indax in (. • 1
loop

tlraopy.paquaa t (
paqua8t_typa_fopaa I => paca I va_da tua_octa t,
chunk.of.addpaaa.topaa I => don t _capa_X_datua,
octat.topaal => tuo_octatB (Indax)))

end loop;

haadap_buffap.Idant MI cat Ion i= Convapt_tH08oaa_apray_to_pacopd(
tHO_oeta ta(>..1))|

— Updata tha txo chackauai.
chackaua i= chackaua zor

Convapt_tHOBOaa_appay_to_pacopd(tMO_octat8(t..l))j

chackBua.ulth_optlona i= chackaua.«Ith_optIona xor
Convapt_tHOBoaa_appay_to_pacopd(two_oetat8<t..l))|

 Gat tha flaga (3 blta) ar.d tha fragment offset (13 bits).

for I ndax in 6 . . 1
loop

tluBOpy.paquaa t (.
paquaBt_typa_fopaa I => paca 1 va_da tua_oc tat,
chunk_of_addpaBB_fopaa I => don t_capa_X_datuB,
octat.topaal ■> tuo.oc tats (indax));

end loop)

haadap.buffar. flags aaak
(nuabap_to_ba_aaskad_fopaa I =>

tuo_octatB(hlgh_octat_byta)l
aaak.fopaal => h lgh_3_b I tt) ;

haadap_buffap.fp»ä«ant_offaat i=
aaakT

nuabar_tr ,.ba_aaskad_«0PBa I => tuo.oc ta ta (h Igh.oc t at_by ta) ,
aaak.föraäl ' => l0H_5_blta)

a ahlftS + tuo.ectata(lou_actat_byta) |

— Updata tha tuo chaekauaa.
chackaua i ■ chackaua xor

Convapt_tHoaoaa_appay_to_paeopd(tuo_octatB(»..l))j

chackBUB_Hlth_optIons i= chaekaua.«Ith_optlona xor
Convapt_tHOBOaa_appay_to_paCOPd(tHO_octat«(t..l));

— Gat tha tlaa-to-llva oetat.
naaopy.paquaat(

paquaBt_typa_fopaal => paea I va_da tua_oc ta t,
chunk_of_addpaBB_foPBal => dont_capa_X_datua,
octat.fopaal => haadap.buf lap . t laa_to_l I va);

— Updata tha two chaekauBa.
chackaua.lo t= chackaua. lo xor

haadap.buffap.tlaa.ta.liva|
chackBuB_Hlth_optlonB.lo «= chackBUB.HIth_optIona.lo xor

haadap.buflap.tlaa.to.llva;
mm Gat tha protocol octat.

c

,„..„...„, -■ — —- HP

ET6

Ada Sprjifications forlhe Dod fateroet Protocob
The IN1I_ OUT Submodule ReportNo. 1 page 47

n«Borg_P»qu«it (
r«qui«t_typ«_«0PB«l => ric» I v«_d« tua.oc til,
chunk o? •ddr«ii_«orii«l => eiont_e«r«_X_dMu«,
oct.tlfop««! => ht«dtr_buMtr.protocol)!

 Updata tha tuo chacksuaa.
chaokaun.hl <= chackauB.hl xor

haadar.butfar.ppotocolj
chackau« «Ith.optlona.hl t= chackauB.MIth_opt1ona. h I «or

haadar..buHar.protocol;

— Cot tha haadar chackau« half Herd (2 octata) and dump It on tha floor.

 It'a not naadad.
for I n d a x i n 8 . . 1
loop
na»ory_raquaat(

paquaat.typa.fofBal => paca I va_da tun.oc tat,
chunk oT addpaaa.toPBal => don t_capa_X_da tu«,
oetat.topaal => tHO_oc t a ta (Indax) >;

end loop;

— Cat tha aoupca and deatlnatlon addpaaaaa and tha raat ol tha
— haadap buflap uhlch conalata of tha option octata. FOP all octata
— paat tha tHar.tlath, updata only ona chackau«. Nota: no convapalon

— pout Ina la naadad hapa.

for Indax in 12 .. haadap_langth - 1

loop
flaiiiopy_paquaa t (

paquaat_typa_fop»al => paca I va_da tu^.oc tat,
chunk_o7_addpaBa_«op«al = > don t_cara .X.datui», ,,..,».
octatlforoal => haadap_buf fap. octa t _buf fap (Indax)) |

if Evan (Indax) and then indax < 28 then
rhackauM.lo «■ chackaun.lo xor

h-a-tp_b(|||tp#00t-t_kul«,r(lnd«K)|
chackau»_ulth_optlona. lo := chackaui._Hith_optlona.lo xor

haadop_buffap.octat.buffap(Indax)|

elmf Evan(Indax) and then Indax >= 28 then
chackau«_Mlth_optlona.lo .= chackau-_-lth_op1.ona.lo xor

haadap_buffap.octat_buffap(Indax)j

claif not Evan (indax) and then Indax < 28 then
^h.rk»u« hi :~ chacl.auB.hl xor
ehaekaua.n. h,,d,P_buffap.oct.t_buffap(Indax),

chackaua_Hlth_option..hl .= chackau-.uIth_optlona.h1 xor
haidap_buffap.octat_buffap(Indax);

else — not Evan(lndax) and than Indax >= 28 than
chackauo Hlth_optlona.hl «= chackaus.MIth.optlona.hI xor

hta<|#r_bulf-r.i0t,lj,uffar<lii<M>i

end if;

— Ua «aka tha aacond antpy call on TparaIata_T0S_Ta8k.
Tpanalata_TOS_Taak.Sand_paault(

auccaaalui tpanalatlon => good.hoadap,
tea Indax => loca l_na t_t oa_l ndax) |
t0,-,na"x „ Cood.haadap la aat falao if

 tpanalatlon la unauceoaafu 11

 In uhlch caaa tha valua obtained
 for loeal.nat.toa.lndax la
— uiI I ba Iqnopad.

end loopi

end Raad_ln_haadap|

tt '-+'* ■«•»"

-~— —-• ^m 'm iiimiiiMiiiiiii^üi^^wi»«

c t u

I

Ada Specifications for the Dod Ihteniet Protocol:
The IN M _ OUT Submodule Report No. 1 pfi«e46

Rda-to-SI I icon Projact
Univanlt^ of Utahi

DoD Intarnat Protocol INn_0UT aubaodula

Ada coda «or tha body of thu procadurai

Compact—optiona (callad by Do.aand)

Varalon of Novaabar 1, 1982

sepnrnU.(Ina_0ut_l1odula.Do_sa-d)

procedure Coapact_optiona

— Func t I oni
This procadura I« Invokad uhan constructing tha aacond fragaant
(and only tha aacond fragaant) of a datagraa.
Tha procadura coapvcta tha Mat of optiona In tha haadar by kaaplng
only thota optiona that ara flaggad to ba copiad. Tha haadar langth
and total langth ara alao updata-1 aa wall aa tha chackaua. Tha
valua of chackaua_uith_optIona is racoaputad froa froa tha valua of
chackaua

is
(jeaaaad globaI a.

— chackauat tHo_octat_racord(
— chackaua_Hith_optionai tHo_octat_racord|

-- Subtypa declaration:

subtype IndaxB.typa is intagar range 8 .. 2 •* 6 - 1)
— Because max haadar aiza + 64 octatt.

— Constanta:

option_offaati conatant intagar t= 28|
— Of faat (in octata)
-- indicating uhara tha
-- optiona list baglns.

haadar_length_Hith_no_optionai conatant intagar := 2P;
copy_op t ion.truat constant Intagar >= 1;

— Flag valua indicating
-- that tha currant option la
-- ba copiad to all fragaants.

— Local variable declarations:

nau_haadar_langthi indax6_typa;
options_langtht index6_type;
currant_opt ion_langtht Indax6_typa;

laading_curaort

traI Iing_cursor t

Indox6_type;

Indax6_typa;

nuabar_of_pad_octatai Intagar range 8

begin

3!

— In octata.
-- Langth of options list.
-- Lang";h of a candidate
" option.
-- Indicataa naxt option
-- considarad for copying.
— Indicates slot In haadar
-- to racalva tha naxt
-- cop lad opt Ion.

— Doas this haadcr has any options?
if haadar_iangth <= haadar_langth_uith_no_optiena then

return; -- There ara no options to
end if; — to "coapact".

-- Initialize variables.
optlons_langth i= haadar.langth - haadar_iangth_HIth_no_optIonai

•<

•f-ip»r nnuiMwi mmmmmmmm UIIII.IUIIIIIIIIUMll 'm ■ PMUiiiijiHiiiiiini i mmm

v i u

Ada Specifications for the Dod Intemet Piotocob
The INM_ OUT Submodule Report No. 1 page 48

i

!

M

iLf

I «ading_cur»or is 8;
tra I I i ng.eursor i= 0|

-- Inltlallz« ehtektuM_HIth_optIom fro* chacksua.
ehackauH.HIth_opt lona := ehackaua;

— Ha uca < rather than < =
-- to avoid scanning tha
-- taralnal octal, Mhlch auat
-- and *and-of-optIona-lIst*
-- oc ta *.

— Ragln cumpactlng flaggari options.

while laad I ng.euranr < op 11 ons_lsngth

loop
-- Is this option raprasantad as a slngla or multiple octet?
-- Dlscrialnata by axaalnlng tha option's number.
if haadar.buffar.octat_buffar(

optlon_offsat + laadIng.cursor) rem shifts < 2 then
currant_optlon_langth t= 1;

else

— Gat tha naxt option octat. It contains tha option length as Its
— value.
cur rant_opt lon_langth := haadar_butfar.octat_buflar(

optlon_offsat + 1 + laading_cursor);
end if)

-- Determine whether or not this option should ba coplad.
if Shi f t_r Ight (

haadsr_buffar. octat_buffar(optlon_oftsst + laadIng.cursor), 7)
■ copy_option_trua then r

for copy_lndax in • currant_optIon_langth - 1
loop

haadar_buffai-.octat_buffsr(optlon_offaat +
trailing .cursor -I- copy.indax)

:= haadar_buffar.octat_buf!ar(optIon_offaat +
I sad Ing_cursor + copy.lndax);

— Updaia ch«cksum_uIth_optIons. Toggla on odd- and avan-vatuad
— bytas In completed options field.
if (trailing_cursor 4- copy_indsx> mod 2 = 8 then

chacksua.w 11 h_op t I ons . I o t= cheo ,um_H i th_op t i ons . I o xar
haadar_buffar.octat_buffar(

opt Ion_o f fsat +
traiIlng_cursor + copy_indax)|

else
chackf.un_u I th_op t lons.h I I J chacksua.u I th_op 11 ons. h I xor

hsadar^buffar.octat_buffar(
op tIon_of fast +
tra I Mng_cursor 4 copy_lndax)|

end ifi
end loop;

— Update tha traI I Ing_cursor.
traI Iing.cursor i= traI I Ing_cursor + currant.option_langth;
end if;

— Updata tha laadln;_cursor.
laadIng_cursor t= laadIng_curaor + currant_optlon_langth;

end loop;

— Pad out tha laat option Hord ulth pad oetats (Including thb last one,
— Mhlch Is an and-of-aIl-optlona octat) until Ma hava raachad a 32-b 11
— boundary.

nuMbar_of_pad_octata t= 4 - (traM lng_cursor modi);
for copy_index in 8 . . number_of_pad_octet» - 2
loop
— Intart a V««* octat (= ■88888881').
haadar buffar.octat buffar(op11 on offsat 4- tra I Mng_euraor + copy_lndax)

«= 1»

—

_-^-— ' *mmmmmm*m mmmmmmmmm^mR

Ada SpecificaKons forUie Dod faternet Protocol
The INH OUT Submodule Report.No. 1 page 50

— updatt ch«cit»u«i_Hith_opiion« Hith pad octtt (= "aeeeeeei").
ch«clciuB_Hl th_opt lorn i ^ chacltauB.H I th_opt Ion« xorlj

end loop;

 Nou Inaart tha laat pad octat.
— Inaart an "and jf-aI I-optIona" octat (= "88888888").
 Note that tha xaro valua oi tha and-ol-a!l-optIona octat
 Mill not Chang» tha valua of tha eurrant chackauaj hanca thara I«
 no updata of tha checksum for thla octat.

haadar_buff»r.oetat.buffar(
option offaat + traI I Ing.curaor + nu«bar_of_pad_octata - 1)

.= 8)

naH_haadar_langth
i= optlon_offaat + traiI Ing_cupaop + nuabar_of_pad_octataj

 Updata tha total langth flald and tha chackauM.

— Flrat back out octata containing total_langth fro» tha chacKauB.
checksum Mlth_optlon8 i= chacKau«_H Ith_optIona mor

Convart_tHoao«a_array_to_r»cord(
ha«dap_octat_arpay(2 .. 3))5

haadar buffar,totaI.langth := Convart_lntagar_to_tHO_oetat_pacord(
ConvaPt_tHO_octat_recopd_to_lntagapt

haadap_buffap.total_langth)
- haadap.langth - naM_haad»p_langth)j

-- Nou updata chackau« ulth octata containing nau total.langth.
chackBUB.ul th_opt lona ;= chack 8U«I_M I th_op t lona xor

Convapt_tuoio«ia_appay_to_pacopd(
haadap_octat_appay(2 .. 3)>;

— Updata tha IHL fiald and tha chackaua.
— Back out octat containing old IHL valua fpo« tha chackau«.
checksum ulth optlona.lo i= chackBU«_HIth_optIona. I o

xor haadap_octat_apray (8) ;

h»ad»p_buffap.IHL := Shift_pIght(naH_h»adap_langth , ♦)j

-- Updata chackau« ulth octat containing nau IHL valua.
chackauauith optlona.lo J= chack BU«I_H I th_op t i ona. I O

xor haadap_oct-t_appay (8) i

end Compact_opt ions;

mm*tä^mii*m*m~l**Mimt*miltm . _-iiil

"" -—"—- •■ ■-■■ -~ HMXPHPiRpHI^H

b lb

Ada Specificaüona for the Dod fatemet ProtocoL
The INM_ OUT Submodule Report.No. 1

page 51

Rda-to-SII Icon Project
Univ«rEity of Utaht

OoD Intornot Protocol INn_0UT cubaodul«

Rda coda for tha bodg of »ha procedupat

Send-fragment (ca I lad by Do.aand)

Varalon of Novaabar 1, 1982

with FlfoJIodula, Loca l_Na t.flodu la;

■eparate(Ina_0u t Jlodu I a. Do.aand)

procedure Sand_frag«ant< „..IR,
data frag»ant_«lzai bltlB,
auccäaaful fragnant.trana»IaaIoni outboolaant
"planatlo^. out out.r.apon.a)

Functloni
This procadura puta
1) local not addraaa
2) local net TOS
3) fragment haadar
<) fragaant data - H

aaaociatad with
tha data fragnan

Thia procadura, afta
on tha local nat (th
by a paramatar pataa
transmission of tha
8uccaaaful_fragaant_

It it aot to fallt.
the success <a^nt_oK

Into tha local nat FIFO tha follo-lng -
- local nat addraaa for tha currant fragment
- local nat TCS for tha currant fragrant

hlch la pullad out byta by byta fro« tha l1««ory
tha INH.SRV «odula. tha alza of
t ia paaaad aa a para-atar to thla procadura.

r «tufflng tha FIFO, «Ml do a ti-ad «"»ni •■',
• call «mat ba conplatad In tha tlM apaclflad
d doun fro« INtl.SRV). Upon auccaaaful
contanta of tha FIFO to tha local nat, «*•
transmission flag »ill ba aat to trua, otMrulaa
Tha valua aaalgn.d to «axp lanaatI on" eonflr«a
) or provldaa tha raaton for fallura.

— Ranaaad taalc antrlaai

rrocedure na«ory_raquaat(
P raquaat typa.foraal: «»ory.raquaat.typa,

chunk oT .ddraa._for.al. chunK.of_addraaa_typa,
octaOor.al« oat oc ta t_typa)

rename« tla.ory.Raquasti

procedure Local_nat_out_raq<
co..and_fora«l. local_nat_co..and_typa,
raaponaa formali out local_nat_raaponaa_typa)

renames Loca l_Na t_l1odu la.Local_Na t .Out.raqj

procedure Flfo_raq(
co..and_for.ali fIfo_co..and_typa;
octat_for.a I i octat_typa)

renames Fi fo_l1odula.Flfo.Flf o_raqj

Local variable daclarJtIonat

octat_ragl«tar»
local_nat_raaponaai

oc tet_typo;
local_nat_raaponta_typa}

begin
auccaaaful_fragsant_tranasl.alon t= trua;

Ralnltlall»a tha FIFO.

. .,

m—r U.u-,,«,.,.. „..M. n^,.m !,.,„„. ,. mm. mmmmmmmmmmmiK^

L16

Ada Specificauona for the Dod tatemet Protocol:
The INll- OUT Submodule Report No. 1

Flfo_P«q(
co«in«nd_«orii« I => r«i«t,
oct«t_«orB«l = > dont_c«r»_oct«t)>

pageGZ

— Load thi FIFO ulth tht Iragn^nt'i local n«t addraaa pravloual«
 tavad In tha I nm.addraaa.buHar.
for Indax in 8 . . I nai.addraaa.langth - 1

loop
Fl fo_ra^(

coiiiiiiand_for«al => atora,
octat_«or»al => Iniii_addraa8_buf (ardndax)) j

end loop;

-- Load tha FIFO uith tha local nat toa.
for Indax in I oca I_nat_toB_lndax ..

local_nat_typa_o«_aarvica_tabla_poH_8lia

loop
F ifo_raq(

coiiBand_for«a I => atora,
octat_for«al => toa.tabladndax)) ;

end loop;

 Load tha fragnant'a haadar into tha FIFO.
for Indax in » .. haadar.langth - 1

loop
FIfo_raq(

comaar.d_for«a I => atora,
octat_for«al => haadar_octat_arpau(lndax));

end loop;

— Gat the data fragmant Irom tha «ia«ory and load It Into tha FIFO,
for data_indax in 8 .. aogaant_langth - 1

loop
Maaory.raquaa t(

raquait_typa_f OPBII => raca I va_da tu«_oc ta t,
chunk oT addraa»_«or«al => don t_cara_X_datu«, _
octat.lormal = > octat_ragI ata^>;

Fllo_raq(
coii«iand_f oma I => atora,
octat.foraal = > octat.ragiatar);

end loop;

— Do a tliaad antry call on tha local nat Indicating that
— tha FIFO haa a «ragaant Hlth local nat In format ten In It

■elect
Loc#l_nat_out_raq(

co««iand_for*al => raca I va_«rag«ant,
raapon8a_tor«al => loca l_na t.ratponaa) >

or
delay t l«a_ou t_ln_iil I I laaconda;

Conditional aalact.
-- Uaa fragaant racaivad?

- Valua naa coaputad by
- R«ad_lnlt_paraaatjra

-- Tha local nat randaioua haa tlaad out.
•xplanation t- loc«l_nal_tIaa.out;
auccaaaful_<rag*ant_trana«l8alon i= falaa;

end select;

 Taat to aaa If tha local nat racaivad tha fragaant.
if ,uccaaa<ul_fragaant_tranaalaalon — Local nat did not tiaa out.

and thö« — fld• "Short-circuit" phraaa.
not (local nat raaponaa = fragaant_racaivad_oK) then

 Local found aoaathlng naa Hrong.

• xplanation J= I ocal_nat_arror;
auccaaaful_fragaant.tranaaiaalon i= falaa;

end if;

r -^—■ —^^w-«—_^-—^--^-. i
o u u

Ada Specifications for the Dod btemet Protocot
The INH_ 0ÜT Submodule Report No. 1

end Sand_fragaant|

page 53

m*

mmmmimm^mmmmmmmmmm^mmi- mmmmmmmmmmmmmmmmmmm

Ada SperificuUons for the Dod Internet Piotocot
The INM_ OUT Submodule Report No. 1 page 54

References

[1] Alan B.Hayes.
High-level Logic Design of the DoD IN M-OUT Module.
April, 1982.
Ada to Silicon Project Internal W orking Document, Department of Computer Science,

U niversity of U tah.

[2] Organick, E. I., and Lindstrom, G.
M apping high-order language units into VLSI structures.
In Proc. COMPCON 82, pages 15-18. IEEE. Feb., 1982.

[3] Organick, E.I., Carter, T.M ., Linds«rom. G.. Smith, K.F., Subrahmanyam, P.A.
rrans/brmatton of A da Programs into Silicon. SemiAnnual Technical Report.
Technical Report UTEC-e2-0£C, University of Utah, March, 1982.

[4] Organick, E.I., Carter, T., Hayes, A.B., Lindstrom, G., Nelson, B.E., Smith, K.F.,
Subrahmanyam, P.A.
Transformakon of A da Programs into Silicon. Scond SemiA nnual Technical Report.
Technical Report UTEC-e2-103, University of Utah, November. 1982.

[5] Postel, Jon: editor.
Internet Protocol: DA RPA Internet Program, Protocol Specification.
Technical Report RFC 791, Information Sciences Institute, USC, Sept., 1981.

[6] Postel, Jon: editor.
TYonsmisston Control Protocol: DA RPA Intemet Program, Protocol Specification.
Technical Report RFC 793, Information Sciences Institute, USC, Sept., 1981.

[7] Postel, Jon: editor.
Assigned Numbers.
Technical Report RFC 790, üiformation Sdenoes Institute, USC, Sept., 1981.

[8] Postel. Jon: editor.
Intemet Control Message Protocol: DA RPA Intemet Program, Protocol Specification.
Technical Report RFC 792, Information Sdenoes Institute, USC, Sept., 1981.

